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Abstract

The international shipping sector is a vital part of the global trading system but also
a large emitter of carbon dioxide emissions. In the absence of a multilateral carbon
policy for the shipping sector, different countries are starting to impose unilateral
measures to decarbonize maritime trade. This paper investigates the impact of uni-
lateral policy on global carbon emissions and welfare by introducing heterogeneous
transport technology to a quantitative model of trade. The framework emphasizes
the role of transport providers which allocate clean and dirty vessels to shipping
routes and thereby determine trade flows, transport costs and emissions in the en-
tire network. Unilateral policy interferes with the allocation process by altering the
cost of transport or restricting port access to specific vessel types. Using unique
data on ship-level fuel consumption and network traffic, I study the impact of up-
coming unilateral policy in the EU. I find that carbon taxes can achieve sizeable
emission savings as long as the supply of transport services is sufficiently elastic.
Emission savings, however, are not large enough to compensate for lower levels of
trade, resulting in an aggregate loss of welfare.
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1 Introduction
International trade is a major driver of anthropogenic climate change. Around one-third

of trade-related carbon emissions are created outside the factory gate and instead are

directly linked to the international transport of goods (Copeland et al., 2022). The lion’s

share of global transport activity is maritime. Container ships alone account for roughly

40% of global trade in terms of value and volume1 and emit over 230 million tons of car-

bon dioxide (CO2) every year (IMO, 2020). This makes the shipping sector an important

lever for cutting global CO2 emissions.

Concerted efforts to reduce maritime transport emissions have had limited success. While

the International Maritime Organization (IMO), a multilateral agency tasked with mon-

itoring the shipping sector, has communicated clear emission targets2 to align the sector

with the Paris Agreement of 2015, carbon emissions have continued to increase over the

reference period (UNCTAD, 2022). This failure to cut carbon emissions is linked to a lack

of enforceability at the multilateral stage3 and has created a new trend in environmental

policy: addressing global transport emissions unilaterally.

Starting in January 2025, the EU will impose a carbon tax and fuel standards on all ships

operating in EU waters.4 This represents the first binding carbon policy targeting the

shipping industry to date and similar proposals have since been put forward in the US.5

These unilateral attempts to decarbonize maritime trade raise two important questions:

(1) Are unilateral policies a suitable tool to cut carbon emissions in maritime trade? (2)

What are the welfare implications for countries around the world? This paper addresses

these questions in four steps which range from an empirical investigation of proprietary

1Maritime shipping accounts for 70% and 80% of global trade in terms of value and volume (Brancaccio
et al., 2020). Among all seaborne trade, goods carried on container ships account for 60% and 50% in
terms of value and volume (Heiland et al., 2022).

2The 2023 IMO GHG Strategy calls for a 20-30% reduction of annual greenhouse gas emissions in
international shipping by 2030 relative to the baseline year of 2008. CO2 emissions have increased by
10-15% over the same period (UNCTAD, 2022).

3IMO proposals typically have to be enacted by the flag state under which a ship is sailing. The IMO
however has no formal power to sanction individual member states in case of non-compliance.

4The EU policy is discussed in detail in section 4.3.
5The Clean Shipping Act (H.R.8336) was first introduced to the US House of Representatives in 2022

and would impose increasingly strict fuel standards for all journeys involving a US port.
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shipping data to counterfactual exercises using a quantitative trade model.

To start with, I present unique microdata to study the determinants of transport emissions

in maritime trade. The data combines vessel movements with hourly fuel consumption

estimates of every container ship which allows me to track carbon emissions across the

entire transport network. The descriptive analysis of the data bears two important in-

sights: Fuel efficiency, measured in tons of fuel per container-kilometre, varies significantly

within the fleet and is skewed towards traffic-intensive parts of the network. Transport

providers therefore play an important role for global transport emissions by choosing how

to allocate clean and dirty vessels across the network.

My first contribution is to establish a set of stylized facts that link the observed alloca-

tion behaviour of shippers to cost incentives created by a heterogeneous stock of transport

technology. Ship-level fuel efficiency is the result of two underlying mechanisms: hetero-

geneity between ships, which is largely related to ship size, and heterogeneity within ships,

determined by the share of transport capacity in use, also known as the load factor. Large

ships in general consume less fuel per container-km, making them the most cost-effective

and cleanest form of maritime transport. This advantage however vanishes if a ship is

not operating at full capacity. As only certain segments of the global network experience

sufficient transport demand to sustain high load factors, vessel operators are incentivized

to allocate their cleanest ships to traffic-intensive parts of the network. To gauge the en-

vironmental impact of unilateral policy, we therefore need to account for the endogenous

reallocation of transport technology and ensuing change in fuel efficiency across network

segments.

I formalize this mechanism by integrating transport emissions into a structural model

in which trade is routed through an endogenous transport network. I follow Ganap-

ati et al. (2024) and combine a canonical trade model featuring Ricardian selection and

input-output linkages (Caliendo and Parro, 2015) with a route selection model of Allen

and Arkolakis (2022). In the model, trade flows are routed indirectly through a global

transport network, mimicking the flow of containerized trade observed in the data.

The key novelty and second contribution of this paper is to introduce transport emis-
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sions as the result of a technology allocation process in the transport sector. Transport

services are provided by a heterogeneous fleet of vessels that travels along a fixed set of

circular shipping routes. Shippers allocate vessels to routes to serve transport demand at

the lowest possible cost, taking into account that fuel efficiency differs across vessels and

varies with the load factor on each segment. These cost incentives result in an optimal

allocation in which larger and more efficient vessels are allocated to network segments

where transport demand is high, just as observed in the data. This generates a cost

advantage that is passed on to consumers in the form of lower transport cost on these

segments. As the allocation changes endogenously with the level of transport demand, so

does transport cost and the carbon emissions created in the process. Expressing trans-

port cost as the outcome of an endogenous allocation process has two important benefits:

First, it explains why transport costs fall at higher levels of traffic and thereby provides a

new microfoundation for scale effects in the maritime transport sector. Scale effects play

an important role for the welfare effects of policy interventions (Asturias, 2020; Ganapati

et al., 2024) and emerge naturally in my framework. At the same time, the allocation

mechanism determines the fuel efficiency of transport services throughout the network

which allows me to study the environmental consequences of carbon policy.

The theoretical framework allows me to study the environmental impact of two distinct

types of policy measures. Cost-based interventions such as carbon taxes aim to lower

transport emissions by reducing transport demand. I show that the efficacy of this ap-

proach is closely linked to the supply elasticity of transport capacity. If demand for

transport services falls while the supply of vessels is inelastic, shippers are forced to de-

ploy more ships than necessary which decreases load factors and can offset any emission

savings of the policy. Overcapacity thus lowers the efficiency of transport services and

reduces the environmental gains of unilateral policy interventions. Allocation-based in-

terventions instead shape carbon emissions by imposing unilateral emission thresholds or

fuel standards for all vessels operating in their jurisdiction. If this unilateral interference

runs counter to the cost incentives of shippers, it causes an allocation distortion which

lowers emissions locally but raises transport emissions globally. Unilateral interventions
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in theory therefore do not guarantee any emission savings, but instead create complex

trade-offs that can only be resolved empirically - an insight which marks the third contri-

bution of this paper.

To study the impact of unilateral policy on global carbon emissions and welfare, I cali-

brate the model to the shipping network in 2018. I then perform counterfactual exercises

based on unilateral carbon taxes and fuel standards proposed by the EU which yield three

important results: (1) Accounting for the endogenous response of transport providers low-

ers emission savings by 50%. Ignoring changes in network efficiency due to a reallocation

of vessels or falling load factors leads to a severe overestimation of environmental gains

of the policy. (2) Carbon taxes achieve sizeable emission savings as long as shippers can

avoid overcapacity by withdrawing vessels from their fleet. In the absence of overcapac-

ity, a 10% EU carbon tax reduces maritime transport emissions by 7.8% and production

emissions by 1.4%, saving a total of 22 million tons of CO2. While this points to im-

portant complementarities between both emission types, EU transport taxes shift global

production to non-EU countries which raises the emission intensity per unit of output.

Unilateral policy might therefore be more effective when initiated by emission-intensive,

non-EU countries. (3) Emission savings are not large enough to raise welfare. I find

that a 10% EU carbon tax decreases global income levels by 0.3%. This income effect

exceeds the aggregate social benefit of emission savings by several orders of magnitude

and results in a welfare loss across countries. Acting unilaterally can therefore push the

sector towards decarbonization but only at an enormous cost to welfare.

Related literature: By combining detailed microdata with a structural model of trade,

transport and emissions, this paper contributes to three broad strands of literature. A first

strand is a large literature studying the interaction between trade and the environment.

Research in this area has studied the determinants of carbon emissions (Copeland and Tay-

lor, 1994; Antweiler et al., 2001), the impact of trade policy (Cherniwchan, 2017; Shapiro

and Walker, 2018; Shapiro, 2020; Bombardini and Li, 2020), carbon leakage (Hanna,

2010; Chung, 2014; Aichele and Felbermayr, 2015; Fowlie and Reguant, 2018) and the

optimal design of carbon policy (Nordhaus, 2015; Kortum and Weisbach, 2022; Farrokhi
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and Lashkaripour, 2023). The vast majority of the literature however exclusively focuses

on production emissions, ignoring the environmental externality created by the interna-

tional transport of goods. By shedding light on transport emissions, this paper not only

fills an important gap in the literature, but also allows us to study the joint response of

transport and production emissions to changes in unilateral policy.

This paper also contributes to a literature studying trade networks. Acknowledging the

indirect nature of trade has yielded important insights about the role of infrastructure

investments (Redding and Turner, 2015; Heiland et al., 2022; Ducruet et al., 2024), modal

choices (Coşar and Demir, 2018; Fuchs and Wong, 2022) and endogenous transport cost

(Brancaccio et al., 2020; Fajgelbaum and Schaal, 2020; Ganapati et al., 2024; Wong, 2022;

Allen and Arkolakis, 2022) which all shape how goods flow through the network and have

important consequences for the propagation of shocks and the distribution of welfare. This

paper offers a parsimonious way to introduce carbon emissions to a quantitative model

of trade, allowing us to study the role of network features for environmental outcomes

without losing the rich structure of theoretical frameworks developed in this literature.

The literature closest to this paper directly focuses on transport emissions. This burgeon-

ing literature has generated valuable insights about transport emissions across different

modes of homogenous transport technology (Cristea et al., 2013; Shapiro, 2016), empha-

sized health benefits of restricting local pollution near coastal settlements (Hansen-Lewis

and Marcus, 2022) and warned against inter-modal leakage as a consequence of tightened

environmental regulation (Lugovskyy et al., 2024). My setting differs from these papers

in two important aspects. First, I limit attention to a single mode of transport but allow

intra-modal technology to be highly heterogeneous. This reveals a novel form of carbon

leakage that stems from a reallocation of transport technology within the same sector.

Second, in contrast to local pollutants such as particulate matter or sulphur, carbon emis-

sions are a global externality that affects everyone irrespective of the origin of pollution.

This raises novel questions about the design of unilateral transport policy whose immedi-

ate impact is local but whose efficacy depends on the response of economic agents around

the globe.
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2 Data
This section documents the key determinants of global transport emissions in container-

ized trade. I start by presenting two proprietary datasets6 which capture ship movements

and transport emissions of the global fleet. Together they provide a complete picture of

how goods travel through the global transport network and the environmental externality

created in the process. I then use this rich source of information to study the key drivers

of transport emissions in maritime shipping.

The first dataset contains port of call information that is recorded by Automatic Iden-

tification System (AIS) transceivers installed on container ships. AIS data is available

for every container ship in the global fleet and records ship movements between 2014

and 2018. Each time a ship enters or leaves a port, a satellite records the current time,

location and submersion of the vessel. This detailed information allows me to reconstruct

every ship journey taken between a pair of ports, infer the volume of transported goods7

and capture the entire flow of containerized trade in the transport network.

The second dataset contains hourly estimates of ship-level fuel consumption in 2018.

These estimates are based on high-resolution AIS data and a detailed set of ship char-

acteristics. I use these hourly estimates to measure the fuel efficiency of every container

ship in the global fleet. Fuel efficiency is hereby defined as the amount of fuel a ship

needs to consume to transport a single twenty-foot equivalent container (TEU) over the

distance of one kilometre. This efficiency measure varies between ships and changes with

the current load factor of each vessel as explained in detail in section 3.

Combining both datasets then allows me to observe the transport emissions associated

with every individual trip taken by a container ship in the global transport network. To

do so, I compute the total fuel consumption of each journey and use a constant emission

factor published by the IMO (2020)8 to translate fuel consumption to CO2. I therefore

6Both datasets have been provided to me by S&P Global and are described in detail in appendix A.1.
7Transport volume is calculated by comparing the ship’s current submersion, as recorded by the

satellite, to the ship’s submersion when travelling empty, which is reported in a separate dataset capturing
ship characteristics. The exact engineering formula is described in appendix A.1.

8I use a benchmark emission factor of 3.114 gCO2/gfuel as reported for low sulphur heavy fuel oil
(LSHFO) in table 21 of the IMO’s Fourth Greenhouse Gas Study 2020.
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abstract from variation in fuel types when computing transport emissions.9

Aggregate transport emissions can be decomposed into two key determinants: (a) the

average fuel efficiency of the global fleet and (b) the total level of transport demand

measured in container-kilometres. Expressing transport demand in units of TEU-km

is important when taking the perspective of transport providers because it reflects the

amount of transport capacity required for a given service. Two shipments which involve

the same number of containers but are transported over an uneven distance for example

require different levels of capacity and will create different costs for transport providers.10

The shipping industry fittingly refers to TEU-km as the level of ’transport work’ which

is the main measure of transport demand in this paper.

Figure 11 in appendix B.1 shows how both determinants have evolved between 2016-

2018.11 While average fleet efficiency has improved over time, aggregate transport demand

has increased disproportionately during the same period, resulting in a rise in global trans-

port emissions.12 Rejuvenating the global fleet by the introduction of newer and cleaner

vessels evidently has not been sufficient to reduce carbon emissions in the sector.

Can unilateral policy revert this trend? The answer to this question depends on how

the two emission determinants, average fuel efficiency and transport demand, respond to

policy interventions. In this paper, I focus on the short to medium run in which unilateral

policy is unlikely to trigger the mass-rollout of a carbon-neutral propulsion technology.13

I therefore assume that the stock of available technology remains largely unchanged14 but

still allow policy interventions to affect transport emissions via transport demand.

9The emission intensity of the two main fuel types, heavy fuel oil and liquefied natural gas, differs
by 13% according to emission factors published in EU regulation 2023/1805. Differences in emission
factors across marine fuel types are therefore small when compared to the large variation in fuel efficiency
between and within vessels reported in section 3.

10Transporting 5,000 TEUs between New York and Boston requires a lot less transport work than
shipping the same number of containers from New York to Rotterdam.

11While AIS data records all ship movements between 2014-2018, draught data which is required to
compute cargo loads is only available from 2016.

12This pattern is not limited to the sample period. Transport emissions from containerized trade have
increased consistently over the past decade as shown in table 4.31 of UNCTAD (2022).

13The average time to build a new container ship is three years. While several companies have started
to test container ships using carbon-neutral propulsion technologies, these pilot programs are unlikely to
achieve large-scale adoption in time for the IMO’s 2030 emission target.

14I relax this assumption in section E.3 by increasing the share of clean ships in the global fleet.
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A key insight of this paper is that the second emission determinant, fuel efficiency, con-

tinues to respond to policy interventions even if the number of clean and dirty vessels

remains completely unchanged. To illustrate this point, we first need to understand the

origins of vessel heterogeneity in the global fleet.

3 Stylized Facts
In this section, I present three stylized facts to illustrate how vessel heterogeneity shapes

the allocation of technology in the global transport network. Large ships enjoy an effi-

ciency advantage over smaller ships and all vessels become more efficient when operating

at higher load factors. As load factors in the network increase with segment traffic, op-

erators minimize fuel consumption by allocating their largest vessels to segments where

transport demand is high. The allocation of technology in the network is therefore deter-

mined by the cost-saving incentives generated by heterogeneity in the global fleet and the

distribution of traffic across network linkages. Allowing shippers to follow these incentives

is crucial to minimize fuel consumption and global transport emissions. I then discuss the

consequences of this allocation behaviour for the theoretical framework.

3.1 Transport technology is highly heterogeneous

Figure 1 shows the fuel efficiency of all 5,100 container ships active in 2018. Each panel il-

lustrates an important dimension of heterogeneity. Panel 1a focuses on differences between

ships and shows that (inverse) efficiency is increasing with ship size. A medium-sized ves-

sel with a capacity of 5,000 TEU on average consumes 57% more fuel per container-km

than a ship with a transport capacity of 20,000 TEU. Big ships can spread their fuel

consumption over a larger number of container slots and on average achieve higher levels

of fuel efficiency in the process. This cost advantage of large ships however is contingent

on the load factor at which they operate. Fuel efficiency within ships falls dramatically if

container slots remain empty. A 5,000 TEU vessel at full load can therefore be as efficient

as the largest vessel in the fleet if the load factor of the latter is low. Panel 1b illustrates
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Figure 1: Fuel efficiency of the global fleet of container ships

(a) between-ship heterogeneity (b) within-ship heterogeneity

Note: Figure 1 shows the fuel efficiency of all active container ships in 2018. Efficiency is measured
as the amount of fuel a ship needs to consume to transport a single container for one kilometre at
sea (= gfuel/(teu ∗ km)) and is based on data described in appendix A.1. Ship size is measured as
TEU capacity. Colours in panel 1a represent the decade in which the ship was built. Bars in panel 1b
show the possible range of fuel efficiency for selected vessels using within-ship load factor elasticity
β estimated in Appendix D.1.

this pattern by plotting the efficiency range for select vessels as red bars15 where the lower

(upper) end of each bar refers to the ship’s efficiency at full (zero) load. I summarize these

observations as follows:

Stylized fact 1: Fuel efficiency is highly heterogeneous between and within ships and

increases with ship size and the load factor of each vessel.

3.2 Load factors increase with leg activity

High load factors are crucial to keep the cost of transport services as low as possible.

In practice, however, load factors vary significantly due to an uneven distribution of

transport demand across the network. Figure 2 shows the relationship between transport

demand and average load factors across different network segments. The point estimates

of binscatter regressions across ship size bins indicate a strong log-linear relationship

between load factors and segment traffic.16 Ships operating on traffic-intensive parts

15The indicated range is based on the within-ship load factor elasticity estimated in appendix D.1.
16Segment traffic (or activity) here is measured in units of transport work. Traffic intensity therefore

refers to the supplied amount of transport capacity on the segment. Supplied capacity increases if the
number of transported containers or the port-to-port distance is large.
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Figure 2: Load factors and transport work across network segments

Note: Figure 2 plots point estimates of a binscatter regression following Cattaneo et al. (2023). Load
factors and transport work have been aggregated to the segment level as described in appendix A.
Separate graphs for each size class are available in appendix B.2. Ships are grouped into different
bins according to their transport capacity in TEU, represented by different colours and shapes.

of the network on average experience higher load factors - a pattern that holds across

ship types as shown in figure 12 in appendix B. This systematic relationship17 results in

efficiency gains for any ship operating on these segments. To summarize:

Stylized fact 2: Container ships operating on traffic-intensive network segments on

average experience higher load factors and fuel efficiency.

3.3 Clean technology is allocated to traffic-intensive legs

Stylized facts 1 and 2 create a clear incentive structure for the allocation of ships in the

maritime transport network. To exploit the efficiency differences in their fleet and save

cost, vessel operators should allocate their largest ships to traffic-intensive network seg-

ments where load factors are high.

17The theoretical framework presented in section 4.2 rationalizes this positive relationship as the result
of demand dispersion within observed shipping routes. The amount of transport capacity supplied to a
route is determined by the route-segment with the largest transport demand. On the top route-segment
this leads to a load factor of 1 while all other route-segments experience load factors less than 1. Network
segments with high amounts of traffic on average also experience higher levels of demand within routes,
making them more likely to be the top segment. This creates a positive correlation between segment
demand and load factor.
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Figure 3: Allocation of transport technology across network segments

(a) fuel efficiency on the segment (b) transport work share within segments

Note: Figure 6 depicts the observed allocation of container ships across network segments. Panel 6a
shows the average fuel efficiency on network segments (y-axis) by segment traffic measured in units
of transport work (x-axis). Panel 6b groups network segments into traffic bins ranging from low (bin
= 1) to high (bin = 10). Colours refer to ship size bins and indicate what share of traffic within a
traffic bin is served by vessels of a given size. Vessel size is hereby measured as total TEU capacity.

Figure 6 demonstrates that the observed allocation in the data is fully consistent with

these incentives. Average fuel efficiency at the segment level systematically decreases with

segment traffic (6a), precisely because big vessels (yellow and green bars) account for a

larger share of transport work when comparing low to high traffic bins in the network

(6b). In summary:

Stylized fact 3: Large ships are allocated to traffic-intensive network segments - an al-

location fully consistent with cost-saving incentives generated by stylized facts 1 and 2.

Establishing a direct link between the observed allocation behaviour and cost-saving incen-

tives of vessel operators generates two important insights. First, it provides an empirical

underpinning for the theoretical framework presented in section 4. Here, I illustrate how

the observed allocation of container ships can be replicated from two simple ingredients:

a heterogeneous stock of technology at the ship-level and a fixed set of circular routes

on which they operate. Second, it suggests that there exists an optimal allocation under

which operators achieve the lowest possible cost by fully exploiting the cost-incentives laid

out in stylized facts 1 and 2. Any alternative allocation which deviates from this bench-
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mark raises aggregate fuel expenditure and transport emissions. The allocative efficiency

of the global fleet can therefore be defined by the degree of control operators enjoy over

the allocation of their vessels.

In practice, the allocative efficiency is constrained by infrastructure, policy, and other fac-

tors which restrict to which parts of the network ships can be allocated. A 20,000 TEU

vessel will for example never be able to dock at a port which cannot accommodate ships

of that size, even if doing so would be beneficial from the perspective of vessel operators.

The allocation observed in figure 1a is therefore not unconditionally optimal, but instead

reflects the best response to a given set of allocation barriers.

The notions of allocative efficiency and allocation barriers are important because they

open the door for unilateral policy to actively influence global transport cost, emissions

and welfare without imposing a direct tax on transport emissions. Instead, global emis-

sions can solely change in response to a reallocation of ships that is initiated by the

imposition or removal of allocation barriers.

Unilateral policies aiming to reduce carbon emissions can therefore either target transport

cost directly in form of carbon taxes or do so indirectly by interfering with the allocation

process. To understand the effectiveness of each approach, we need a theoretical frame-

work which links trade, transport and emissions which is presented in the next section.

4 Theoretical Framework
In this section, I present a theoretical framework in which trade is routed indirectly though

an endogenous transport network creating carbon emissions in the process. In the model,

different production technologies across countries create a Ricardian motive for trade and

the indirect nature of shipments necessitates the choice of an optimal route between each

origin and destination. Both features are achieved by combining a generalized Eaton-

Kortum framework of trade with the route selection model of Allen and Arkolakis (2022).

The key novelty is to express transport cost as the outcome of an endogenous allocation

process in the shipping sector. Operators are tasked with finding an optimal allocation

of ships across a fixed set of circular routes and need to serve transport demand at the
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lowest cost possible. Cost incentives generated by heterogeneity in the global fleet lead to

an allocation in which traffic-intensive network segments experience higher levels of fuel

efficiency and lower transport cost. The allocation offers a new microfoundation for scale

effects in the shipping industry, endogenously responds to changes in transport demand

and thereby provides a unified framework to study interactions between trade, transport

and emissions. In section 4.3, I use this framework to study the impact of unilateral

policy on transport emissions. An estimation of model parameters and quantification of

counterfactual scenarios are deferred to sections 5 and 6.

4.1 Setup

Consumption and Production: The baseline setup closely follows Ganapati et al.

(2024) (GWZ) who introduce route selection into a general equilibrium model of trade to

study the maritime transport sector. In an Eaton and Kortum (2002) world with J coun-

tries and N industries, consumers in each country j choose from continuum of goods ωn

which are homogenous within, but heterogeneous across industries n.18 Consuming goods

grants consumers utility according to function Uj = Uj(Cj) that is continuous and twice

differentiable. The function’s argument Cj is a matrix capturing the chosen quantity of

each good consumed in j.

On the production side, goods in sector n of country i are produced according to produc-

tion function qin(ω) = fin(zin, Lin, Qin) where fin(.) is continuous and twice differentiable,

zin represents the production technology, Lin is a vector of non-tradable factor inputs and

Qin is a matrix of goods from other industries used as inputs in production of good ωn.

The production function and all inputs vary at the country-sector level but are com-

mon within industries of the same country. With perfect competition among firms, the

marginal cost of goods in a country-sector is

cin ≡ cin(zin,Wi, Pi)

18The data used in this paper allows to define industries at a highly disaggregated level to ensure the
assumption holds for all sectors of the economy.
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where Wi is a vector of factor prices in country i and Pi a matrix of prices of all goods

used as inputs in industry n.

Pricing: Goods can be sourced domestically or purchased from foreign markets. The

price of a good produced in country i and sold in country j is

pijn(ω) = cinκijnτijnr(ω)

It consists of marginal cost cin, bilateral trade costs such as tariffs which are unrelated

to transport κijn and transport costs τijnr incurred when shipping ω along the lowest

cost route r connecting country i and j. In standard Eaton-Kortum fashion, goods are

purchased if the combined cost of production, trade and transport undercuts the price

of all other goods from the same sector offered in country j. This Ricardian selection

provides a motive for trade and ensures that observed prices pijn represent least-cost

combinations in all markets.

Shipping: A key distinction from canonical models of trade is the presence of a transport

network. Rather than being forced to transport goods directly, producers can choose an

indirect route involving an arbitrary number of intermediary stops Kr before reaching their

destination. I use the term network leg or network segment interchangeably to describe

a direct link connecting two stops. Following Allen and Arkolakis (2022), transporting

goods over a network segment belonging to route r creates leg cost

tkr−1,kr = f(Ξ, εkr−1,kr) (1)

which is a function of endogenous network traffic Ξ and exogenous cost components εkr−1,kr

such as leg distance. Leg costs tkr−1,kr are expressed ad valorem. Chaining up all segments

used along a route delivers a deterministic route cost

τ̃ijr =
Kr∏
k=1

tkr−1,kr(Ξ, εkr−1,kr)
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Producers seeking to minimize transport cost can therefore compare different direct and

indirect routes τ̃ijr connecting origin i and destination j.19 To allow variation in route

choices within origin-destination pairs, route costs are subject to an idiosyncratic shock

drawn from a Fréchet distribution with cumulative distribution function (cdf)

Fijn(ϵ) ≡ Pr{ϵijnr(ω) ≤ ϵ} = exp
{
−ϵ−θ

}
(2)

where shape parameter θ governs the strength of dispersion in route choices between origin

i and destination j. The stochastic transport cost20 of a route is

τijnr =
τ̃ijr

ϵijnr(ω)
(3)

The presence of idiosyncratic route shocks rationalizes deviations from deterministic least-

cost routes τ̃ijr connecting i and j and matches the observed dispersion in route choices

in the data.

The gravity of traffic: Ricardian selection implies that the observed price of good ω

shipped along route r between countries i and j must represent the lowest price among

all competitors supplying the same good along different routes r′ or from different origins

i′. Assuming Fréchet distributed route shocks, the joint probability that pijnr(ω) is the

lowest price among all other offers can be expressed as

πijnr(ω) ≡ Pr
{
pijnr ≤ min

i′∈I\i,r′∈Rij\r
pi′jnr′

}
=

[cinκijnτ̃ijr]
−θ∑

i′∈I

[
(ci′nκi′jn)−θ ·

∑
r′∈Ri′j

τ̃−θ
i′jr′

] (4)

as shown in appendix C.

As each route is chosen with non-zero probability, it is useful to derive an expression

which aggregates the transport cost of all routes taken by industry n supplying country

j from country i. To do so, I first introduce adjacency matrix An =
[
t−θ
kln(Ξ, εkl)

]
which

captures the direct cost of traversing a single segment of the transport network, scaled

by Fréchet parameter θ. The total transport cost of all routes of any length between i

19Note that τ̃ijr is common across all goods choosing route r.
20Note that higher draws of ϵijnr(ω) lead to a reduction in route costs τijnr
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and j can then be expressed by matrix Bn which is the Leontief inverse21 of the weighted

adjacency matrix An:

Bn(Ξ, ε) = [τijn] ≡
∑
r∈Rij

τ̃−θ
ijr ≡

[
(I − An(Ξ, ε))

−1
]◦(−θ)

,

where ◦ represents an element-wise Hadamard power. Allen and Arkolakis (2022) show

that expressions of direct (tkl) and total (τij) transport cost collected in matrices An(Ξ, ε)

and Bn(Ξ, ε) can be used to describe the relevance of individual links in the transport

network. They define link intensity πkl
ijn as the expected number of times a segment (k, l)

is used for bilateral trade between countries (i, j). Summing across all routes connecting

country pairs (i, j) and using sourcing probability πijnr from equation 4, link intensity

can be expressed22 entirely as a function of elements of cost matrices An and Bn:

πkl
ijn =

∑
r∈Rij

πijnr∑
r′∈Rij

πijnr′
nkl
r =

(
τijn

τikntklnτljn

)θ

(5)

Intuitively, the second representation of link intensity in equation 5 compares the cost of

the optimal routes chosen by producers, τijn, to the cost of alternative routes connecting

(i, j) via segment (k, l). If all least-cost routes naturally contain link (k, l), both costs

will be identical and the link intensity equal to one.23 If routing trade via segment (k, l)

however raises route costs beyond τijn, link intensity πkl
ijn will decrease, reflecting a lower

relevance of the link for trade between (i, j).24

Multiplying link intensity from equation 5 with bilateral trade Xij and summing across

all country pairs (i, j) yields the equilibrium volume of traffic flowing along each network

segment (k, l):

Ξkln =
∑
i

∑
j

Xijn

(
τijn

τikntklnτljn

)θ

(6)

21Representing matrix Bn as a Leontief inverse of adjacency matrix An requires the spectral radius of
An to be less than one. This is the case if

∑
j t

−θ
ijn < 1 for all i.

22nkl
r describes the number of times route r passes through link (k, l). The derivation steps for equation

5 are shown in appendix A.2. of Allen and Arkolakis (2022).
23Note that producers are assumed to choose routes optimally, meaning τijn capture the lowest possible

transport cost between countries i and j. Link intensity is therefore restricted to the unit interval.
24Forcing US-China trade (i, j) to be routed via New Zealand and Australia (k, l) would add consider-

able cost compared to a direct service connecting both countries and result in a low link intensity.
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In this gravity equation, segment traffic Ξkl is directly related to origin-destination trade

Xij and elements of cost matrices An and Bn which together determine link intensity. As

link intensity is invariant to changes at the origin-destination level, other factors such as

tariffs or multilateral resistance have no impact on segment traffic after conditioning on

bilateral trade.25

Equation 6 provides a direct link between trade, traffic and the transport network. As

such, it represents an ideal starting point to study the propagation of shocks caused by

unilateral changes in policy. To assess the environmental impact of such policies, the next

section introduces carbon emissions by modelling the optimal behaviour of ship operators

in the transport sector.

4.2 Transport sector

Scale effects: Throughout the previous section, transport cost matrices A and B are

assumed to be endogenous and to vary with the current level of network traffic Ξ. While

the model imposes no restrictions on the relationship between transport volume and cost,

descriptive evidence presented in section 3 and empirical estimates in the literature26

all suggest the presence of scale economies in the shipping industry which manifest in a

negative relationship between cost and volume (dth/dΞh < 0).

In this paper, scale effects emerge as the result of an optimal allocation of transport

technology in the shipping sector. The key assumption maintained throughout the paper

is that transport cost th is a function of the average fuel efficiency F̄h of all ships allocated

to network segment h27

th = f(F̄h) where
∂th
∂F̄h

> 0 (7)

25A reduction in tariffs for example leads to proportional changes in cost across all routes. The implicit
comparison between optimal and alternative routes shown in equation 5 therefore remains unchanged.

26Ganapati et al. (2024) find that a 1% increase in traffic reduces leg costs by -0.06%. At the origin-
destination level, Asturias (2020) estimates a trade-cost elasticity of -0.23.

27To facilitate the discussion, network segments from now on are indexed using edge notation h rather
than node notation (k, l).
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where function f is continuous, twice-differentiable and increasing in fuel efficiency.28 The

intuition behind this assumption is simple. Segments receiving a more efficient allocation

of ships experience lower levels of unit fuel consumption F̄h. Unit fuel savings are then

passed on to consumers in the form of lower transport cost th. The allocation of ships

across the network therefore directly determines transport cost on every segment.

As the allocation is an endogenous outcome that responds to changes in transport volume

Ξh, we can explain scale effects in maritime shipping as the product of two distinct

elasticities: a positive elasticity governing the pass-through of fuel savings to transport

cost, and a negative elasticity describing the allocation behaviour of vessel operators

dth
dΞh︸︷︷︸

total scale effect

=
∂th
∂F̄h︸︷︷︸

pass-through

· ∂F̄h

∂Ξh︸︷︷︸
fuel elasticity

(stylized fact 3)

(8)

As shown in stylized fact 3, unit fuel consumption decreases with segment traffic ren-

dering the product of both elasticities negative. The origin of scale effects in maritime

shipping can therefore be traced back to the same culprits responsible for the allocation

of technology: heterogeneity in the global fleet (stylized fact 1) and a positive correlation

between load factors and traffic (stylized fact 2).

Linking transport cost to the allocation of technology provides a new microfoundation for

scale effects and distinguishes this paper from the existing endogenous transport network

literature.29 In this paper, transport cost, scale and emissions all endogenously change

with the allocation of technology which is described next.

Allocation setup: There are two important features of the container shipping industry

that allow me to model the vessel allocation in a tractable manner: an inelastic supply

of transport services that is plagued by overcapacity and a stable set of container routes

that are directly observed in the data.

28This assumption is formally tested in appendix D.5. Results using external price data suggest a
pass-through rate 1.115.

29Ganapati et al. (2024) also estimate leg-level scale effects the maritime transport network but resort
to an estimation approach that remains agnostic about the underlying mechanism. This forces them to
use a fixed scale parameter in each counterfactual whereas scale effects in this paper change endogenously
with the allocation of technology.
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First, the supply of transport services is almost completely inelastic in the short to medium

run because lengthy construction times and high investment costs prevent shippers from

a strategic expansion or withdrawal of capacity in response to changes in transport de-

mand.30 At the same time, persistent overcapacity caused by long-run investment cycles31

forces shippers to price close to marginal cost.32 In this paper, I therefore assume that

transport capacity is quasi-fixed33 and that any variation in transport cost is related

to changes in transport demand34 via the optimal allocation of transport technology as

shown in equation 8.

Second, the majority of containerized traffic occurs on a stable set of circular routes L as

shown in appendix A.2. Ships serve demand by passing through a fixed sequence of route

segments (L, h) before returning to their original point of departure. This traffic pattern

distinguishes container shipping from other forms of maritime transport35 and greatly

facilitates the allocation procedure as demonstrated below. I treat route formation as

exogenous which means that unilateral policy can affect traffic across routes but leaves

30Evidence supporting an inelastic supply of transport services is presented in appendix B.3. Figure 13a
shows that the average construction time of a modern container ship is three years. Operators therefore
cannot respond to a sudden surge in transport demand by expanding their fleet. At the same time, 96%
of all ships are active at any given time as shown in Figure 13b. Paired with an average vessel service life
of 20 years, this indicates that the large initial investment cost forces operators to continuously deploy
all available vessels over an extended period of time to achieve any return on investment.

31Leibovici and Dunn (2023) show that investment in new ships concentrates around rare demand
spikes such as the global financial crisis or the Covid-19 pandemic. Due to capacity constraints in the
shipbuilding industry, global transport supply increases steadily in the decade following the shock, causing
tremendous overcapacity after the initial demand shock subsides.

32Average operating margins of shipping companies in the sample period (2014-2018) are close to zero
(Notteboom et al., 2022). South Korean shipping company Hanjin even declared bankruptcy in 2017.

33Specifically, I assume that the level of transport capacity cannot increase and that the share of
available clean and dirty capacity remains unchanged. Conversely, I do allow shippers to withdraw
capacity to avoid a capacity surplus and consider alternative fleet compositions in appendix E.3.

34This reduces the objective of vessel operators to a simple cost-minimization process in which they
choose an allocation that serves a given level of transport demand at the lowest possible cost. This
assumption is appropriate for a setting in which global transport demand never exceeds total transport
capacity. The counterfactuals studied in this paper all lead to a reduction in transport demand which
ensures that the transport sector never operates at capacity. Alternative settings in which demand exceeds
capacity such as in the aftermath of the global financial crisis in 2009 or the Covid-19 pandemic in 2021
would require a different set of assumptions.

35Bulk carriers studied by Brancaccio et al. (2020) for example operate similar to taxis in that they
travel wherever demand (or the anticipation thereof) takes them. Container ships on the other hand are
more comparable to buses which follow a predetermined route and (un)load containers along the way.

19



the set of available routes unchanged.36

Optimal allocation: Containers are transported along a predetermined set of routes

L. Each individual route L ∈ L consists of a fixed sequence of route-segments (L, h) of

length dL,h. Shippers operating these routes face a given level of transport volume ΞL,h on

each segment and have to allocate a sufficient amount of transport capacity to the route

to ensure that all containers are transported.

Transport capacity is provided by two37 types of ships s which differ in size Ns, per-km

fuel consumption δ̂s and fuel efficiency δs = δ̂s/Ns. Following stylized fact 1, I assume

that

A1: The unit fuel consumption of clean ships, denoted δc, is smaller than the unit fuel

consumption of dirty ships δd such that δc < δd (= between ship heterogeneity).

A2: The unit fuel consumption of any ship type s decreases with load factor µ such that

∂δs(µ)/∂µ < 0 (= within-ship heterogeneity).

A3: Clean ships are larger than dirty ships such that Nc > Nd.

The available amount of clean capacity Bc is strictly smaller than total transport demand.

Shippers therefore have to decide how to optimally allocate their clean capacity to serve

transport demand on all routes at the lowest cost possible.

To solve this complex allocation problem, I exploit the fact that the minimum amount of

capacity a circular route needs to receive is uniquely determined by the route-segment with

the largest trade volume ΞL,max. A ship of size Ns requires (ΞL,max/Ns) route rotations

to serve demand on all segments which means the entire route consumes
∑

h ΞL,maxdL,h

container-km of transport capacity. As the number of route rotations is determined by

ΞL,max, ships travelling over the top segment will always be fully loaded (µ = 1). On

all other segments, ships traverse a segment at full load for the first (ΞL,h/Ns) rotations

but do not carry any containers on the remaining trips. The fuel expenditure of any

36Between 2016 and 2018, 76%-82% of annual transport volume occurs on routes that are also available
in an adjacent year. I therefore leave an endogenous route formation for future work.

37Note that the framework can accommodate any number of ship types as long as vessel efficiency δs
increases with vessel size Ns.
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route-segment (L, h) can therefore be written as

FL,h =

(
δ̂µ=1
L,s · ΞL,h

Ns︸ ︷︷ ︸
cost of full trips

+ δ̂µ=0
L,s · ΞL,max − ΞL,h

Ns︸ ︷︷ ︸
cost of empty trips

)
· dL,h (9)

where notation δ̂µL,s = δ̂L,s(µ) refers to the per-km fuel consumption of vessel s travelling

under load factor µ. Summing across route-segments, the total route cost can then be

expressed as

FL = δµ=1
L,s ·

∑
h

ΞL,hdL,h + δµ=0
L,s ·

[∑
h

ΞL,maxdL,h −
∑
h

ΞL,hdL,h

]
. (10)

To determine how to allocate the limited amount of clean capacity, shippers compare the

route cost incurred under each ship type. The savings associated with replacing all dirty

ships on a route with clean ships are

RL =

{(
δµ=1
L,c − δµ=1

L,d

)
+

(
δµ=0
L,c − δµ=0

L,d

)
·
[∑

h ΞL,maxdL,h∑
h ΞL,hdL,h

− 1

]}
·
∑
h

ΞL,hdL,h (11)

and consist of two components: total route demand
∑

h ΞL,hdL,h and savings per container-

km represented by the expression in curly brackets.

While savings generally increase with route demand, they can differ across routes even

if demand on all routes is equal. The reason for this interesting finding is related to

the level of demand dispersion within each route. Represented by the term in square

brackets, demand dispersion is high if the majority of route demand is concentrated on

the top segment (L,max). High dispersion increases the number of empty trips and

raises the overall cost of operating the route. Shippers comparing two routes with the

same demand but different levels of dispersion will therefore always prefer to allocate

clean capacity to the route where dispersion is higher.

Equation 11 allows me to derive a unique allocation rule for the entire transport network

that minimizes transport cost. For any given vector of transport demand ΞL,h, set of

routes L and clean budget Bc, routes can be ranked according to their savings potential

RL. Clean capacity is then allocated sequentially according to the ranking until the budget
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is depleted. The optimal allocation rule for clean capacity then becomes

rank(RL) = r ⇒ δ∗r,s =


δr,c if

r∑
1

(∑
h

ΞL,maxdL,h

)
≤ Bc

δr,d if
r∑
1

(∑
h

ΞL,maxdL,h

)
> Bc

(12)

where δ∗r,s denotes the technology type s allocated to route L with rank r.

Surplus capacity: After all clean ships have been allocated according to equation 12,

demand on remaining routes is served by dirty vessels. Using L′ to denote the set of

routes that do not receive any clean capacity, the total dirty capacity required to serve

demand is B′
d =

∑
L′
∑

h(ΞL′,maxdL′,h). Given the persistent overcapacity in the container

shipping industry, I assume that there is always a sufficient amount of dirty capacity Bd

available to serve demand on routes L′. While this ensures that demand is cleared on

all routes, it raises the question of how shippers deal with a potential capacity surplus in

case Bd −B′
d > 0.

Running a capacity surplus increases total transport cost and emissions because any route

that accommodates additional vessels will experience lower load factors which decreases

fuel efficiency δd(µ). Under an inelastic supply of transport services, all surplus capacity

has to be allocated to the network. To relax this assumption, I allow operators to idle a

fixed share η of their dirty fleet to reduce the surplus capacity to (1 − η) · Bd ≥ B′
d and

present results for different levels of η in section 6.38

If idle rates are not sufficient to eliminate surplus capacity, we need a second allocation

rule to determine how the surplus should be optimally allocated across routes. To do so,

I compute the marginal increase in route cost from an additional unit of surplus capacity.

The derivation is presented in appendix C.2. Assuming a common maximum load factor

µL′,max < 1 across all routes L′, the cost increase per unit of surplus capacity is

CL′ = (δ
µ=µL′,max

L′,d + βµL′,max) · µ̄L′ + δµ=0
L′,d · (1− µ̄L′) (13)

38Historically, operators have responded to negative demand shocks by idling a share of their fleet or
increasing scrapping rates to limit cost increases from overcapacity. The largest recorded fleet reduction
from both measures over the past two decades is 12% (Monios, 2023). An increase in surplus capacity
beyond this rate is therefore unlikely to be offset by a deliberate reduction in capacity.
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where µ̄L′ =
∑

h ΞL′,hdL′,h∑
h ΞL′,maxdL′,h

represents the average load factor on route L′ and β =

−(dδL′,d/dµ) is the within-ship load factor elasticity.

Equation 13 indicates that the cost increase from surplus capacity is inversely propor-

tional39 to average load factor µ̄L′ . To minimize total cost, shippers should therefore

always allocate their remaining vessels to routes where average load factors are high.

Routes receiving surplus capacity experience a decrease in load factors on all segments

which increases total capacity supplied to the route by factor (1/µL′,max) as shown in

appendix C.2. Ranking routes L′ according to equation 13, the allocation rule for surplus

capacity can thus be summarized as40

rank(CL′) = k ⇒ µ∗
k,max =


< 1 if

k∑
1

(
1

µk,max

∑
h

ΞL′,maxdL′,h

)
≤ (1− η)Bd −B′

d

= 1 if
k∑
1

(
1

µk,max

∑
h

ΞL′,maxdL′,h

)
> (1− η)Bd −B′

d

(14)

where µ∗
k,max denotes the maximum load factor on route L′ obtaining rank k under the

optimal allocation of surplus capacity.

Together, the deterministic allocation rules specified in equations 12 and 14 characterize

the optimal allocation of clean, dirty and surplus capacity for any combination of (ΞL,h,

L, Bc, η). Reallocations caused by a change in transport demand ΞL,h, barriers imposed

on a subset of routes L, an expansion of clean budget Bc or a more elastic supply of

transport services η can all be nested in this framework, making it a useful tool to study

policy counterfactuals.

Allocation outcome: Collecting the allocation outcomes of equations 12 and 14 in

tuple (δ∗L,s, µ
∗
L,max) for every route L in the network, we can describe the fuel cost on

route-segments under the optimal allocation as

F ∗
L,h =

1

µ∗
L,max

(
δ
µ=µ∗

L,max

L,s · ΞL,hdL,h + δµ=0
L,s · (ΞL,max − ΞL,h)dL,h

)
. (15)

39This statement requires that (δ
µ=µL′,max

L′,d + βµL′,max) < δµ=0
L′,d which is always the case for estimates

of fuel efficiency δc and δd, as well as within-ship load factor elasticity β presented in section 5.
40In words, equation 14 means that surplus capacity should be allocated to all routes L′ ranked by CL′

until the total capacity consumed by these routes is equal to total capacity surplus (1− η)Bd −B′
d.

23



Dividing by transport demand ΞL,hdL,h and summing across routes L, we get the average

fuel efficiency of network segment h as

F̄ ∗
h =

∑
L

wL,h

µ∗
L,max

(
δ
µ=µ∗

L,max

L,s + δµ=0
L,s

[
ΞL,max

ΞL,h

− 1

])
. (16)

where weights wL,h = ΞL,h/
∑

L ΞL,h capture the share of transport volume ΞL,h in total

segment volume. Equation 16 summarizes the model-implied allocation of technology in

the transport network which is fully consistent41 with the observed allocation presented

in Figure 6a.

Global transport emissions from containerized trade can then be calculated as

E =
∑
h

[
F̄ ∗
h · Ξhdh · ξ

]
(17)

where ξ is an exogenous emission factor converting fuel to CO2. Equation 17 nicely

illustrates that transport emissions are the direct result of the level of transport demand

in the network Ξhdh and an optimal allocation of technology which determines the fuel

efficiency F̄ ∗
h on each segment.

4.3 Unilateral policy

Before turning to the data, I use the theoretical framework presented above to illustrate

the two main channels42 through which unilateral policy can shape global transport emis-

sions: unilateral changes in transport cost and unilateral interference in the allocation

process. This section showcases the key mechanism underlying each channel and high-

lights the trade-offs and distortions arising in the process.

Unilateral change in transport cost: Carbon taxes, canal fees and port charges all

constitute important cost components that directly respond to changes in unilateral pol-

41Higher levels of transport volume ΞL,h draw clean (surplus) capacity towards (away from) the segment
while also lowering fuel consumption related to demand dispersion within connected routes (ΞL,max/ΞL,h).

42The mechanisms governing each channel are not unique to policy interventions. In fact, unexpected
supply chain disruptions such as the blockage of the Suez Canal in 2021 by the container ship Evergiven
or the Houthi attacks in the Red Sea in 2023 operate through the same channels and can therefore be
studied within the same framework. As the goal of this paper is to investigate whether unilateral policy
can serve as an active lever of sectoral decarbonization, I nonetheless focus on a set of deliberate policy
interventions in the discussion below, leaving an analysis of random supply chain disruptions for future
work.
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icy. Raising cost th on a single network segment alters optimal routing decisions in the

entire network and thereby affect the level of traffic Ξh on every network segment as

shown in equation 6. While the exposure to cost shocks differs across network segments,

global transport demand and trade will always decrease in a counterfactual world where

transport cost has gone up.

This aggregate effect has important implications for the allocation of clean and dirty ca-

pacity in the network. Looking at the optimal allocation of clean capacity in equation

12, lower levels of total transport demand (
∑

L

∑
h ΞL,maxdL,max) and a fixed amount of

clean capacity Bc imply that more routes can be served by clean capacity than before

(r ↑). Conversely, as clean ships take over routes that were previously served by dirty

ships, demand for dirty capacity B′
d falls while the amount of available dirty capacity

Bd remains unchanged. This leads to an increase in surplus capacity (1 − η)Bd − B′
d in

the network. Surplus capacity causes a decline in average fuel efficiency by reducing load

factors on surplus-receiving routes, unless shippers can balance supply and demand (Bd

and B′
d) by idling a sufficiently large share of their fleet (η > 0).43

Policymakers aiming to reduce transport emissions via a unilateral change in transport

cost therefore need to consider two important factors. First, the supply of transport

services needs to be elastic (η > 0) to reap the full environmental gains of the policy.

If shippers are unable to withdraw sufficient capacity in response to falling transport

demand, any emissions savings might be offset by a decline in vessel efficiency. Environ-

mental outcomes are therefore closely linked to overcapacity in the transport industry.

Second, emission reductions achieved by an increase in transport cost always come at

the expense of lower levels of trade. This creates a trade-off between environmental and

non-environmental welfare components. As neither side dominates a priori, we need to

bring the model to the data to understand whether a cost-based approach to sectoral

decarbonization is welfare-enhancing.

43If transport supply is fully inelastic (η = 0), the cost increase from surplus capacity will always be
larger than the savings achieved from an expansion of clean capacity across a larger number of routes.
In essence, this is because a unit of surplus capacity causes load factors on surplus-receiving routes to
decline while load factors on clean routes remain constant.
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Unilateral change in allocation barriers: Environmental regulation, infrastructure

and political sanctions represent a second set of traffic determinants which respond to

unilateral policy. Unlike cost-based interventions, this type of policy affects traffic by

linking network access to vessel characteristics which creates a barrier for the allocation

of vessels across the network.44

In the model, allocation barriers take the form of spatial constraints for the allocation of

transport capacity in equations 12 and 14. While some barriers are consistently imposed

throughout the paper, others are added by unilateral policy.45 Imposing a new allocation

barrier can trigger a reallocation of clean and surplus capacity away from the optimal set

of routes L∗. For shippers, this constitutes an allocation distortion that prevents them

from fully acting upon the cost incentives described in stylized facts 1 and 2. A distorted

vessel allocation raises the fuel expenditure of shippers and results in higher transport

cost for consumers.

What distinguishes allocation barriers from direct cost interventions, is that they only

affect transport cost if the added constraint is binding. Figure 4 illustrates this point

in a setting where a barrier is introduced alongside a carbon tax. The barrier takes the

form of an efficiency threshold F̄policy which on a subset of network segments hp prohibits

shippers from choosing an allocation that results in F̄hp < F̄policy. The baseline allocation

F̄h is assumed to be policy compliant because traffic on all affected segments hp exceeds

the compliance threshold Xp.

The introduction of carbon taxes raises costs in the entire network, shifting fuel efficiency

curve upwards to F̄ ′
h and increases the compliance threshold to X ′

p. As long as traffic on

segments hp remains above the compliance threshold, allocation barriers are non-binding

44An example of environmental regulation are emission control areas which prohibit the use of sulphur-
intensive fuel oils near coastlines (see Hansen-Lewis and Marcus (2022)). Infrastructure characteristics
such as the depth of a port naturally limit where ships can berth. Similarly, shippers have to adhere to any
political sanctions preventing them from serving certain destinations. In the wake of Russia’s invasion of
Ukraine, the EU for example banned the entire Russian merchant fleet from accessing European harbors.

45When calibrating the model in section 5, I ensure that clean ships of size Nc cannot be allocated to
ports that cannot accommodate ships of that size according to the data. To impose this constraint, the
allocation of clean capacity in equation 12 is performed on a subset of routes whose smallest port size
min(NL) ≥ Nc.
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Figure 4: Joint impact of carbon taxes and allocation barriers
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Note: Figure 4 showcases the impact of carbon taxes and allocation barriers in the theoretical model. It
is not based on the observed allocation of vessels and only meant to illustrate the underlying effects.

and have no distinct impact on transport emissions as shown in panel 4a. If traffic on

affected segments however falls below X ′
p, allocation F̄ ′

h is no longer policy-compliant.

To re-establish compliance, clean capacity has to be reallocated from other parts of the

network towards segments hp, causing another shift in fuel efficiency from F̄ ′
h to F̄ ′′

h as

shown in panel 4b. This allocation distortion creates local emission savings on segments

hp at the expense of higher emissions everywhere else and increases transport emissions

on aggregate.

Unilateral allocation barriers therefore have no distinct impact on transport emissions

if the optimal response of shippers is ’naturally compliant’ with the spatial constraint

imposed by the policy. This theoretical insight can help us to interpret counterfactual

scenarios in section 6 in which both types of unilateral interventions, cost-based and

allocation-based, are introduced at the same time.

5 Estimation
I now take the model to the data to estimate key allocation parameters, recover transport

costs and estimate the scale elasticity in maritime shipping. The calibrated model can

replicate the observed allocation of vessels, matches trade and traffic flows in the network

and delivers elasticity estimates that underline the importance of scale economies in the

maritime shipping industry.
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5.1 Matching the optimal allocation of transport capacity

A key advantage of the theoretical framework in section 4.2 is that it only requires a

handful of parameters to capture the entire allocation of vessels across the network. For a

given level of network traffic Ξh, all we need to know is the heterogeneity in fuel efficiency

within and between ships captured by load factor elasticity β and unit fuel consumption

of each ship type δs.

Within-ship heterogeneity β: Load factor elasticity β is defined as the response in

fuel efficiency F̄s of vessel s to a unit increase in load factor µ. In appendix D.1, I estimate

β using hourly fuel consumption data of every container ship in 2018. The load factor

elasticity is identified from observed variation in unit fuel consumption within vessels over

time as shown in estimation equation 30.46 Results in Table 6 indicate that raising load

factors by 10pp reduces the unit fuel consumption on average between 5.1% and 7.1%.

These estimates are robust across a range of ship sizes, load factors, regional restrictions,

environmental regulations and daily weather changes as shown in Table 7.

The results indicate that vessel efficiency increases significantly when operating at higher

load factors. I incorporate these findings into my model by setting β conservatively at

−0.005 which allows the unit fuel consumption δs(µ) of any vessel47 to vary by up to 50%

such that δµ=1
s = 0.5 · δµ=0

s .

Between-ship heterogeneity δ: While parameter β determines the efficiency range

within vessels, differences in efficiency between clean and dirty vessels are captured by

parameters δc and δd. To bring the model as close possible to the data, I create a moment

m1 which captures the difference in total fuel consumption between the matrix of model-

implied consumption Fmodel and the matrix of observed fuel consumption F data in the

46Estimation equation 30 is log(F̄s,r,t) = β · µs,t + FEs + FEr + εs,r,t where indices (s, r, t) refer
to observations at the ship-region-day level. Benchmark estimates therefore account for any unobserved
cost factors related to the ship’s current state of repair (FEs) or regional restrictions such as speed limits
(FEr).

47Results in Table 6 indicate a slight difference in load factor elasticities across ship types. For simplicity,
I assume a common load factor across ship types and choose β conservatively by setting it equal to the
lower of the two.
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data:

m1(δ) =
(
Fmodel(δ|Ξdata,ddata, µmax, N)

)
−
(
F data) (18)

where fuel expenditure in the model is a function of vector δ = (δc, δd), observed traffic and

distance matrices Ξdata and ddata, surplus parameter µmax
48 and ship size N = (Nc, Nd).

Optimal values of δc and δd can then be obtained by minimizing moment m1 using a

GMM estimation procedure.49

In the benchmark setting, I assume µmax = 0.75, Nc = 10, 000 and Nd = 1, 000 which

ensures that shippers continue to face an allocation trade-off between dirty and clean ca-

pacity across all carbon tax scenarios studied in section 6.50 The chosen ship sizes further

imply that 34% of global transport capacity is provided by clean ships in the baseline.51

Alternative budget compositions due a reclassification of clean and dirty vessels or invest-

ment in clean capacity are explored in appendix E.

Matching outcomes: Matching the model to the observed allocation of capacity proves

to be highly successful. Under the optimal efficiency parameters δ∗c and δ∗d obtained from

equation 18, predicted and observed fuel consumption matrices Fmodel and Fmodel(δ∗)

show a correlation (in logs) of 0.95 as illustrated in figure 14 in appendix D.2. The model

therefore correctly captures the distribution of fuel expenditure across the network.

Beyond fuel consumption F , the calibrated model further matches other important mo-

ments that have not been targeted directly by the GMM procedure but are closely linked

to allocation behaviour of vessel operators. Key among them are the relationship between

load factors and traffic (stylized fact 2) and the relationship between unit fuel consump-

tion and traffic (stylized fact 3) first documented in section 3.

48Parameter µmax describes the lowest permissible load factor on the route-segment (L,max). It
thereby limits the amount of surplus capacity each route can receive. On routes without surplus capacity
µmax = 1 whereas routes with surplus as subject to µmax = 0.75.

49To compute model-implied fuel expenditure Fmodel, I aggregate fuel expenditure in equation 15 to the
segment level and minimize moment m1 using an optimal weighting matrix that assigns higher importance
to traffic-intensive segments.

50For µ > 0.75, all traffic is performed by clean vessels if carbon taxes become sufficiently large.
While the model can accommodate this scenario, I defer a discussion of environmental outcomes under a
homogenous transport technology to appendix E.3.

51To determine the baseline budget shares of clean and dirty capacity, I compute the share of global
container traffic (in TEU-km) in 2018 that is performed by vessels with a transport capacity of at least
10,000 TEU.
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Figure 5: Matching outcomes

(a) stylized fact 2 (b) stylized fact 3

Note: The figure shows point estimates of binscatter regressions following Cattaneo et al. (2023).
Dots refer to estimates based on observed data. Triangles are based on the optimal allocation of
transport capacity according to equations 12 and 14 for given levels of traffic.

Figure 5 illustrates how well the calibrated model is able to replicate these stylized facts.

Each panel shows results from binscatter regressions of the respective relationship using

the observed and model-implied allocation of capacity. In Figure 5a, the model correctly

captures the positive correlation between traffic and load factors, albeit more so for seg-

ments experiencing medium to high levels of traffic. This is reassuring because it indicates

that the model preserves the cost incentive of shippers to allocate their most efficient ves-

sels to traffic-intensive segments. As a result, the allocation of clean capacity across

segments closely follows the pattern observed in the data as shown in Figure 5b. Unit

fuel consumption in the model decreases with transport work because traffic-intensive

segments receive a disproportionate amount of clean capacity.

Despite the underlying complexity of the global transport network, these results indi-

cate that a handful of estimated parameters is sufficient to replicate the most important

moments governing the allocation process.

5.2 Retrieving transport cost

While trade and traffic flows are routinely recorded in customs and satellite data as shown

in section 2, leg-level transport cost is typically not directly observed in the data. This

section explains how transport cost can be recovered from the theoretical framework. I

then show how well these estimates can predict observed trade and traffic in the data.
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Recovering transport cost: To recover transport cost matrix A, I follow the procedure

pioneered by Ganapati et al. (2024) which is explained in detailed in appendix D.3. In

short, it exploits model equation 6 which states that the equilibrium flow of leg-level

traffic Ξkl only depends on origin-destination trade flows Xij and leg-level transport cost

captured by matrix A. As trade and traffic are observed in the data, we can invert this

system to recover a cost matrix that rationalizes Ξkl and Xij.

To implement this idea empirically, elements of matrix A are predicted using a gravity-

style estimation equation Â = g(ρ|Y) where Y describes the set of variables used in

function g. The goal is to find a parameter vector ρ for which predicted matrix Â, once

plugged into model equation 6, returns a predicted traffic matrix Ξ̂ that is as close as

possible to the observed level of traffic Ξdata. This approach can be summarized in the

following moment equation:

m2(ρ) =
(
Ξ̂(Â(ρ)|X,Y, θ)

)
−
(
Ξdata) (19)

where predicted traffic Ξ̂ is a function of predicted cost matrix Â, X represents the

observed matrix of trade flows and θ is the trade elasticity.

Predicted transport cost: GMM estimates of parameter vector ρ are reported in

Table 19 in appendix D.3. To assess how well recovered transport cost fits the data,

I plug matrix Â(ρ) into equation 6, compute predicted levels of traffic Ξ̂(ρ) and trade

X̂(ρ) and compare them to their observed counterparts Ξdata and Xdata. Figure 6 plots

the correlation between predicted and observed container traffic and trade in log-shares.

Starting with transport volume as the targeted moment in Figure 14a, both measures show

a correlation of 0.92. Figure 14b instead studies the correlation between both measures

for the untargeted moment, containerized trade, which remains high at 0.68.

The strong correlation across both measures indicates that the recovered cost matrix can

indeed rationalize observed levels of traffic and trade. This not only lends credibility to

the recovered cost estimates themselves, but also underlines the ability of the model to

reliably capture observed behaviour of economic agents.
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Figure 6: Evaluating predicted transport cost

(a) transport volume (b) containerized trade

Note: The figure plots predicted values of transport volume and containerized trade (y-axis) against
their empirical counterparts (x-axis) in the data. Predicted values are obtained by plugging transport
cost Â recovered from equation 19 into equation 6. Each measure is represented as log-shares. The
identity line (black) represents a perfect correlation across both measures while the red line captures
the actual correlation between the two.

5.3 Estimating aggregate scale effects

Equipped with transport cost (section 5.2) and fuel efficiency (section 5.1), I can now use

the theoretical framework to estimate aggregate scale effects in the maritime transport

network.

Aggregate scale effects λ1 describe a decrease in transport cost for higher levels of traffic.

In this paper, they arise as the product of two elasticities: a fuel elasticity α1 capturing

the relationship between unit fuel consumption and traffic (= stylized fact 3), and a pass-

through elasticity σ1 governing the relationship between fuel efficiency and transport cost

(equation 8).

To compare model-based estimates to existing scale effect estimates in the literature, I

proceed in three steps: First, I replicate a model-agnostic approach of GWZ using data

from 2018. In this approach, scale effect λ1 is estimated directly using transport cost

recovered in section 5.2 and observed levels of traffic, and therefore does not rely on

the allocation mechanism described in section 4.2. Next, I use the framework to derive

a theory-consistent equivalent of GWZ and take it to the data. This approach retains

the same identification strategy but decomposes the aggregate scale effect into fuel and

pass-through elasticities in line with the model. Finally, I present scale effects which are
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purely based on the calibrated model. A detailed description of each step is presented in

appendix D.3.

Table 1 summarizes the results of each approach at the segment and origin-destination

level. The table hereby allows comparisons across two groups. The first group consists of

columns 1 and 2 which both apply the estimation procedure of Ganapati et al. (2024) but

rely on data from different years. Estimating scale effects from a larger and more recent

sample52 of traffic flows (column 2) leads to a slightly larger scale elasticity than reported

in the original paper (column 1). According to this estimate, a 10 percent increase in

transport volume on segment h decreases transport cost by roughly 1 percent. The sec-

ond group consists of columns 2, 3 and 4 which all rely on the same sample but follow

different estimation approaches. Comparing a model-agnostic approach (column 2) to

a theory-consistent (columns 3) or purely model-based (column 4) estimation procedure

does not alter the overall results in a meaningful way. Estimates obtained from a decom-

position of scale effects into fuel and pass-through elasticities are therefore consistent with

prior results of the transport literature.53

When conducting policy counterfactuals, scale effects endogenously change with the allo-

cation of transport capacity to capture changes in vessel efficiency under the new policy

environment. This marks an important departure from the literature which typically

treats scale effects as an exogenous parameter. Ignoring the endogenous response of

shippers to a change in transport demand could introduce severe bias to the estimated

environmental gains of the policy. Assuming a constant scale elasticity might for example

overstate the negative impact of carbon taxes on bilateral trade, if the reallocation of

vessels results in an overall decrease in fuel efficiency. To quantify the importance of this

channel, I will directly compare emission estimates under a constant and endogenous scale

elasticity when conducting counterfactuals in the next section.

52Ganapati et al. (2024) estimate scale effects from a sample containing 6 months of traffic data in
2014 while the replication in this paper is based on all containerized traffic in 2018.

53Model-based estimates in column 4 are almost identical to causal estimates obtained from the model-
agnostic procedure developed by GWZ. They also remain very close to origin-destination level estimates
reported by Asturias (2020) which estimate an elasticity of trade cost to trade volume of 0.26.
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Table 1: Scale effect in maritime shipping - summary

Approach: Ganapati et al. (2024) replication observed F̄h model-generated F̄h

Transport measure: TEU TEU TEU TEU-km

Scale effect result
leg-level -0.06 -0.108 -0.139 -0.106
origin-destination level -0.17 -0.259 -0.334 -0.254

IV yes yes yes no

Note: The table summarizes scale elasticity estimates obtained from equations 34-37 following the pro-
cedure explained in appendix D.4 and presented in detail in table 9. Scale effects indicate how the
transport cost on network segment h responds to a unit increase in transport volume (columns 1-
3) and transport work (column 4). Column 1 reports reduced-form estimates from Ganapati et al.
(2024). Column 2 replicates their approach using traffic data from 2018. Column 3 instead shows es-
timates from a theory-consistent estimation equation that is derived in appendix D.4 and applied to
observed fuel efficiency F̄h. Column 4 then presents scale effect estimates from the calibrated model.
Columns 1-3 represent causal estimates after controlling for endogenous changes in transport demand
via a geography-based instrument. All columns assume a trade elasticity θ = 4 and an average route
length of 2.4. The latter is based on observed US container journeys described in appendix A.2.

6 Counterfactuals
Counterfactual exercises presented in this section serve two distinct purposes: First, they

quantify the environmental gains of the EU’s carbon policy and thereby showcase its

role in reaching sectoral emission targets. Second, they illustrate that the theoretical

framework can generate a breadth of novel insights that help us to evaluate, understand

and design new approaches to decarbonize maritime shipping in general.

6.1 Counterfactual methodology

Solving the model in changes: To close the model, I adopt the framework of Caliendo

and Parro (2015) and group all products into containerized (ct), non-containerized (nct)

and non-tradable (nt) sectors (n ∈ [ct, nct, nt]). The model features global input-output

linkages via a roundabout production technology that allows all three industries to serve

as intermediate inputs for other sectors in domestic (nt) or foreign (ct and nct) markets.

The full general equilibrium model is presented in appendix C.3.

I solve the general equilibrium model in relative changes by studying how key variables

of interest respond to changes in transport cost. For this purpose, I adopt the exact-hat

algebra notation and describe changes in any variable as v̂ = v′

v
where v′ and v denote

counterfactual and baseline values respectively. The primary interest of this paper is to
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understand how unilateral policy in the form of carbon taxes or fuel standards affects

global emissions and welfare. To this end, I consider policy-induced changes in leg-level

transport cost t̂kl = t
′

kl/tkl and study the endogenous response54 of trade flows, traffic

volumes and carbon emissions.

Additional data: To quantify the full model, I complement traffic and fuel consumption

data described in section 2 with bilateral trade data of the BACI database (Gaulier and

Zignago, 2010) and retrieve country-level input-output data from the EORA database

(Lenzen et al., 2012, 2013). I aggregate trade, consumption and production data to the

sector level as required by the model and compute Cobb-Douglas expenditure shares φ

and value-added shares γ for each sector. Across all specifications, I follow the literature

and set trade elasticity θ = 4 (Simonovska and Waugh, 2014). The final sample contains

information for all three sectors across 136 countries in 2018. Further details are presented

in appendix A.3.

Counterfactual procedure: Unilateral policy interventions such as carbon taxes or fuel

standards raise the cost of transport for a subset of network segments. These leg-level

changes in transport cost t̂kl change the expected transport cost τ̂ij for every origin-

destination pair in the network because all of them rely on targeted segments with non-

zero probability πkl
ij > 0. While the initial impact of each unilateral policy is local, the

consequence of it is a global change in transport cost.

From the perspective of the model, the change in expected transport cost τ̂ is isometric

to a change in other bilateral cost factors unrelated to transport such as tariffs. When

conducting policy counterfactuals, we can therefore think of each intervention as a highly

heterogeneous change in bilateral tariffs whose intensity is determined by the structure of

the global transport network.

To initialize leg-level cost changes t̂kl, I use benchmark estimates of fuel and pass-through

54Changes in leg-level transport cost t̂kl triggers a change in expected transport cost τ̂ijn. The marginal
cost of production ĉin, price indices P̂in, bilateral trade shares π̂ijn and wages ŵi all respond to a change
in τ̂ijn as shown in equations 25-28 in appendix C.3. The resulting system of equations can be solved
by finding the vector of wages ŵi for which counterfactual trade is balanced (up to a deficit shifter) as
shown in equation 29 (Caliendo and Parro, 2015).
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elasticity from section 5.3 to update local elements of cost matrix A. This unilateral

change in transport cost triggers an endogenous response in expected transport cost τ̂ ,

trade flows X̂, traffic Ξ̂, fuel efficiency ˆ̄F and scale effects λ̂ and continues until a new

equilibrium is reached. Intuitively, this process can be thought of as a sequence of adjust-

ments in which shippers respond to changes in transport cost by reallocating their vessels

to minimize transport cost and consumers in turn respond to updated freight rates by

re-optimizing their global sourcing strategy.

To reach a new equilibrium, I follow the algorithm presented in appendix E.1 which en-

sures convergence55 to a unique56 equilibrium as long as scale effects do not exceed the

inverse of trade elasticity θ (Kucheryavyy et al., 2023).

6.2 Unilateral carbon policy in action
Unlike other forms of transport, the maritime shipping sector to date is not required to

pay for CO2 emissions in any part of the transport network. This situation is about to

change. Starting in 2025, the EU has decided to include the shipping sector in its emission

trading system (ETS), a cap and trade system in which participants are required to buy

allowances for each ton of CO2 emitted within the EU. This unilateral policy applies to

96% of all container ships and covers all direct journeys involving at least one European

port, an area accounting for 22% of global container traffic in 2018.57

At the same time, the FuelEU Maritime Initiative introduces a new set of fuel standards

for vessels operating in EU waters. The policy requires shippers to diversify their fuel

mix away from emission-intensive heavy fuel oils (HFOs) and towards other fossil fuels

55Every transport cost shock can be represented as change in global tariffs. Once transport costs have
been calculated, solving the model therefore follows the same algorithm that was originally developed
by Alvarez and Lucas (2007) and is used by Caliendo and Parro (2015) to study the impact of tariff
liberalization in context of NAFTA.

56This paper focuses on the unique equilibrium that arises from the current equilibrium in 2018. The
framework theoretically admits multiple equilibria. Kucheryavyy et al. (2023), however, show that gravity
trade models with multiple industries which feature external economies of scale at the industry level
remain well-behaved and have a unique equilibrium as long as the product of scale effects and trade
elasticity θ remains smaller than 1. Scale effects in this paper are common across industries and on
average amount to 0.1 at the leg-level. Based on a sample of US container routes described in section
A.2, the average number of legs (at the country level) is 2.4. For a given trade elasticity of θ = 4, this
implies that λ · (1/θ) < 1.

57Ships travelling between two European ports are required to pay for all CO2 emitted on their journey.
If journeys involve a non-European port, only half of the emissions require an allowance.
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with lower emission factors such as liquefied natural gas (LNG) or its organic counterpart

bio-LNG.58 As only a small subset of vessels which tends to be larger and more efficient

is capable of running on LNG, fuel standards can interfere with the vessel allocation by

forcing shippers to maintain a minimum share of clean capacity on EU routes.

The introduction of carbon taxes and fuel standards in the EU provide an ideal environ-

ment to showcase the advantages of the theoretical framework over existing approaches

and investigate the environmental gains of unilateral carbon policy in the shipping sec-

tor. To advance in both directions, I create a benchmark scenario in which carbon taxes

increase the fuel cost on European legs by 10%59 without distorting the vessel allocation

and shippers can avoid surplus capacity by idling up to 13% of their fleet (η = 0.2).60

I then gradually step away from each assumption to highlight important mechanisms of

the model.

Aggregate impact of EU carbon taxes: Table 2 summarizes the response to a 10%

carbon tax in the benchmark setting. Unilaterally raising the cost of transport on EU

legs generates a significant reduction in containerized trade. The magnitude of these

estimates underlines the EU’s central role in the global transport network and cautions

against treating unilateral carbon policy as a regional intervention. While the bulk of

trade reductions concentrate in the EU, trade partners, particularly those in the Union’s

immediate vicinity, experience a similar or even larger decline as shown in appendix E.2.

The policy also achieves sizeable reductions in global transport emissions, albeit not in

proportion to the reduction in traffic because average unit fuel consumption increases.

This presents an important lesson: While taxing maritime transport reduces global traffic

58EU regulation 2023/1805 mandates that the energy intensity pooled across the entire fleet of vessels
in the EU falls by 6% by 2030, 31% by 2040 and 80% by 2050 relative to a reference value from 2020.

59The increase in fuel cost due to an inclusion of maritime shipping in the ETS depends on the price
of fuel and emission allowances which vary over time. Initially, shippers only have to account for a share
of emissions on affected routes (40% in 2025, 70% in 2026, 100% from 2027). Assuming a fuel price of
600 EUR/tFuel, an allowance price of 65 EUR/tCO2, an emission factor of 3.114 CO2/tFuel and using
the 2025 emission rate of 40%, fuel costs on EU legs would increase by (65 ·0.4 ·3.114)/600 = 13.5%. The
benchmark carbon tax of 10% therefore represents an approximation of the initial impact in 2025.

60Parameter η refers to the idle share of dirty transport capacity as shown in equation 14. In the
benchmark calibration, dirty capacity accounts for 66% of the global fleet. The implied idle rate of
0.2 ∗ 0.66 = 13.2% is close to the largest recorded fleet reduction of 12% reported in Monios (2023).
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Table 2: Benchmark: 10% EU Carbon Tax

change in pp Global EU non-EU

containerized trade -5.58 -9.18 -1.32

container traffic -9.48 -12.21 -6.36

fuel efficiency 4.95 12.77 0.14

transport emissions -7.82 -8.49 -7.20

Note: The table presents counterfactual estimates of a 10%
carbon tax on EU segments. The benchmark setting as-
sumes no allocation barriers and an idle rate η = 0.2.

and thereby transport emissions, it also creates inefficiencies as lower load factors raise

the fuel consumption per container-km

Vessel heterogeneity matters for environmental gains: The reduction in fuel ef-

ficiency does not eliminate environmental gains of the policy but dampens the fall in

transport emissions. Shippers faced with a fall in transport demand on EU segments

respond to the average reduction in load factors within their fleet and reallocate clean

vessels across routes to take advantage of efficiency differences between ship types within

the new cost environment. Both dimensions of ship heterogeneity are therefore key de-

terminants of the realized environmental gains of the policy.

Existing approaches in the literature have typically failed to establish a link between

vessel heterogeneity and environmental outcomes which has severe consequences for the

expected emissions savings of unilateral policy. Figure 7 compares the predicted fall in

transport emissions in response to a carbon tax of this paper to the state-of-the-art ap-

proach in the literature. Ganapati et al. (2024) for example would correctly capture the

change in transport demand in the network via estimated scale effects but fail to account

for any change in fuel efficiency across segments linked to the reallocation of vessels or

lower load factors. The best prediction in this case would be to project the observed level

of efficiency on each segment in the baseline onto the counterfactual vector of traffic.

Figure 7 depicts the estimated emission savings of the model (black) to the predicted

emission savings under the same vector of traffic but the baseline allocation of vessels

(red). Emission savings following the current approach of the literature overestimate the
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Figure 7: Homogeneous transport technology overestimates environmental gains

Note: Figure 7 compares counterfactual transport emissions of a model with (black) and without (red)
vessel heterogeneity. The former is based on the framework explained in section 4.2 and assumes η = 0.2
while the latter follows Ganapati et al. (2024). The shaded area indicates the difference of predicted
emission savings under both approaches.

environmental gains by a factor of two. Failing to account for vessel heterogeneity by

either treating ships as homogeneous (Shapiro, 2016) or fully attributing cost savings to

the reduction in traffic (Ganapati et al., 2024) greatly exaggerates the decarbonization

potential of unilateral policy.

While accounting for vessel heterogeneity is important to correctly capture environmental

gains from unilateral policy, within and between-ship channels are not equally important.

To decompose total emission savings into each channel, I re-estimate the full counterfac-

tual model in the baseline setting but prohibit shippers from reallocating vessels across

routes61. This exercise eliminates any impact of efficiency differences between vessels on

transport emissions. Instead, emissions are fully determined by the interaction between

transport demand and the load factor elasticity within ships. The exercise reveals that

only 14% of baseline emission savings are attributed to the reallocation channel while 86%

are linked to changes in fuel efficiency within vessels. Researchers aiming to estimate the

61This counterfactual differs from the scenario shown in Figure 7. The graph shows emission savings
under the correct vector of traffic but assumes a constant vessel efficiency equal to the baseline allocation
in 2018. The counterfactual here instead estimates a new vector of traffic in a setting where shippers
cannot reallocate their fleet but fuel efficiency still responds to changes in load factors across segments.
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environmental impact of cost shocks in the maritime transport network from observed

changes in traffic can therefore approximate counterfactual levels of transport emissions

via reduced form regressions as long as they have a precise estimate of load factor elas-

ticity β.

Surplus capacity determines environmental outcomes: The benchmark setting

assumes an idle rate η = 0.2 which implies that shippers can withdraw up to 20% of dirty

transport capacity to match transport demand on each route and uphold high levels of

efficiency. If shippers instead are unable to adjust capacity to the fall in transport demand

(η = 0) because of rigidities in the supply of transport services, available capacity will

exceed transport demand. The resulting surplus then has to be allocated across routes

which lowers fuel efficiency on affected segments and raises transport emissions. The en-

vironmental response to a unilateral carbon tax therefore crucially depends on the extent

to which shippers can respond to a fall in transport demand.

Figure 8 plots the change in transport emissions under an inelastic (η = 0) and elastic

(η = 0.2) supply of transport services. Allowing for surplus capacity in the transport

sector changes the model predictions. Instead of creating emission savings as seen in the

benchmark setting, carbon taxes increase global transport emissions above baseline levels.

This key finding holds for any carbon tax under consideration. Higher tax rates amplify

potential gains and losses but never resolve the ambiguity in environmental outcomes.

The same holds for alternative fleet compositions presented in appendix E.3. Increasing

the share of clean capacity in the baseline from 35% (benchmark setting) to 45% or 100%

never results in any in emission savings as long as the supply of transport capacity remains

inelastic.62

Carbon taxes are therefore unlikely to generate any environmental gains unless shippers

are able to accommodate the rise in surplus capacity. While this insight is generated

from a framework that focuses on the short to -medium run, it remains important when

62A clean share of 35% in the benchmark is a direct result of the chosen ship size of clean vessels c.
The direct relationship between idle rates η and policy outcomes presented here is therefore independent
of the chosen definition of clean and dirty vessels
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Figure 8: Carbon taxes, transport emissions and surplus capacity

Note: Figure 8 depicts the counterfactual change in global transport emissions for varying levels of carbon
taxes and transport supply elasticity η. The graph considers two distinct scenarios. In scenario 1 (red
dots), the supply of transport services is fully inelastic (η = 0). In scenario 2 (green dots), the supply
elasticity is equal to its historic maximum observed during the global financial crisis and COVID-19
pandemic (η = 0.2).

considering that total transport capacity is expected to increase in the long-run. While a

formal treatment of a long-run capacity expansion lies outside the scope of this paper, I

briefly will return to this point in section 7 and discuss the relationship between surplus

capacity and environmental outcomes in light of rising capacity.

Will fuel standards cause an allocation distortion? A final consideration within

the benchmark setting is the presence of allocation barriers. Estimating the distortion

potential of EU fuel standards is difficult because the data does not allow me to observe

which fuel type a ship is using on a given journey in 2018.63 Rather than trying to quan-

tify the actual fuel standard, I instead simulate a comparable policy scenario in which

the EU forces all clean vessels to switch to an alternative fuel type when operating in

EU waters. The full details of this counterfactual are presented in appendix E.4. The

exercise is meant to resemble the actual policy as closely as possible in that shippers have

63Ships equipped with dual-fuel engines could for example switch from HFO to LNG to improve the fuel
mix. Without knowing which fuel type they have been using in 2018, it is difficult to compute baseline
levels of carbon intensity and assess how much action is needed to meet the new standard.
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to ensure sufficient adoption rates of the new fuel type to meet the policy standard but

are disincentivized from doing so because the adoption is costly.

The results presented in Table 13 indicate that imposing fuel standards alongside carbon

taxes can cause an allocation distortion, but only do so if the policy-induced cost increase

from adopting the new fuel type becomes sufficiently large. Fuel standards which only

cause a moderate increase in fuel expenditure on EU segments in turn are not severe

enough to persuade shippers to reallocate their vessels to other parts of the network.

While allocation barriers in general can play a decisive role in shaping environmental

outcomes, evidence obtained from simulated EU fuel standards in appendix E.4 suggests

that they are unlikely to have a major impact on transport emissions in the short run.

For the remainder of the paper, I therefore exclusively focus on the environmental impact

of unilateral carbon taxes.

6.3 Social welfare

Consumers respond to endogenous changes in transport cost by re-optimizing their sup-

ply chains which alters the locus of production, domestic price levels and wages across

countries. To provide a holistic welfare assessment of unilateral policy, we therefore need

to look beyond the maritime shipping industry and study the combined effect of transport

emissions, production emissions and real wages.

Carbon taxes create environmental spillovers for production: To compute the

impact of EU carbon taxes on global production emissions, I combine country-sector spe-

cific emission intensity64 information from the EORA database with the estimated change

in trade flows of the structural model. The results are depicted in Figure 16a. A 10% EU

carbon tax for containerized shipping is expected to lower global production emissions of

traded goods by 1.4pp. On aggregate, I find that that production emissions account for

21% of the total emission savings of the policy. In fact, figure 16b shows that produc-

tion emissions are the dominant source of emission savings in many countries. A sizeable

share of the total environmental gains of the policy are therefore generated outside the

64Note that sectoral emission intensity does not vary with the level of production.
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transport sector.

EU carbon taxes shift production to emission-intensive countries: While the

EU carbon tax causes an overall decline in production emission levels, Figure 16a also

indicates that emissions per USD of output have actually increased. This rise in emis-

sion intensity implies that carbon taxes on average have shifted the production of traded

goods towards country-sectors with dirtier production technology. Figure 9 visualizes this

process by showing the change in containerized export shares across countries. Unsurpris-

ingly, European producers suffer the largest decline in exports which benefits competitors

in the US, Australia, Canada and China. As these countries on average exceed European

emission intensity by 4%, 23%, 30% and 110% respectively, global emission intensity in

production increases.

These findings carry two important messages: First, they underline the close relationship

between production and transport emissions. Taxing one will inherently affect the other

which is why we shouldn’t treat them as separate entities when assessing the impact of

environmental policies. Second, if carbon policies have to be designed unilaterally, en-

vironmental spillovers between both emission types will strongly depend on the chosen

target. In the current example, a unilateral intervention in the EU does not realize the

full CO2 saving potential because it diverts production towards more emission-intensive

Figure 9: Production of traded goods shifts in response to the carbon tax

Note: Figure 9 shows the change in global export shares across countries in response to a 10% EU carbon
tax on maritime transport. Countries in red reduce global export shares relative to the baseline, while
countries in green expand their share of global exports.
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competitors. Unilaterally taxing transport emissions in a carbon-intensive economy in-

stead might therefore be more efficient from an environmental standpoint.

Emission savings cannot compensate for the loss in real wages: On aggregate,

I find that a 10% EU carbon tax on container traffic decreases global welfare by 0.3%

and saves 22 million tons of CO2. To compare these welfare components to each other, I

translate emission savings into USD using estimates of the social cost of carbon (SCC).

The SCC aims to capture the long-run economic damage caused by emitting an addi-

tional ton of CO2 today. As SCC estimates in the literature vary considerably, I present

results for two different estimates that have recently gained a lot of attention. The Biden

administration for example uses an SCC estimate of 51 USD/tCO2 to evaluate the envi-

ronmental impact of prospective policies, while a recent study of the US Environmental

Protection Agency puts the SCC at 190 USD/tCO2 (EPA, 2023).

Table 3 summarizes the combined effect of environmental and non-environmental welfare

components. Across SCC estimates, the EU carbon tax decreases global welfare roughly

240 billion USD. The welfare loss related to the reduction in trade hereby exceeds the

monetary gain of emission savings by an average factor of 42 to 89. Figure 10 and Table

14 in appendix E.6 complement these findings with welfare estimates for each individual

country. Even after accounting for differences in the social cost of carbon across coun-

tries by using regional damage estimates of Nordhaus and Boyer (2000) and calculating

Table 3: Welfare effects of 10% carbon tax

change Global EU non-EU
real wage (bn USD) -244.41 -127.60 -116.45
transport emissions (mn ton CO2) -18.14 -7.24 -10.56
production emissions (mn ton CO2) -4.18 -2.10 -2.08
welfare SCC50 (bn USD) -241.66 -125.50 -115.82
ratio SCC50 -88.98 -60.82 -184.20
welfare SCC190 (bn USD) -238.54 -124.19 -114.05
ratio SCC190 -41.62 -37.47 -48.47

Note: The table presents welfare estimates of a 10% carbon tax on EU seg-
ments. The benchmark setting assumes no allocation barriers and an idle rate
of 0.2. Social welfare is based on an assumed social cost of carbon (SCC) of 50
and 190 USD per ton of CO2. Ratios divide the absolute change in real wages
by the sum of social carbon benefit (in USD) and tax revenue (in EU countries).
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Figure 10: Social welfare response to 10% carbon tax

(a) relative change (in pp)

(b) absolute change (in billion USD)

country-specific damage weights as in Shapiro (2016), the welfare effects never become

positive. Imposing a unilateral carbon tax therefore does not appear to be welfare en-

hancing, even after accounting for the environmental benefits of the policy.

7 Conclusion
Can unilateral policy decarbonize maritime trade? The results suggest that carbon taxes

can indeed achieve large-scale emission savings and steer the sector towards its self-

proclaimed emission target, but only at an enormous cost to welfare. Even in the most

optimistic scenario, income losses from lower levels of trade exceed the environmental

benefits of the policy by several orders of magnitude. This echoes similar findings in the
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literature which has long emphasized that the gains from trade vastly outpace its envi-

ronmental cost (Shapiro, 2016). Internalizing the environmental externalities of maritime

trade via carbon taxes appears to be a very costly endeavour in the short run.

A lingering question in this regard is whether a temporary drop in welfare is acceptable as

long as these policies accelerate the transition to a carbon-neutral transport technology.

This paper does not attempt to resolve the intertemporal trade-off between the short and

the long run. Nonetheless, it should serve as a cautionary tale against an overly optimistic

picture in which the advent of some future technology grants absolution for any loss in

the meantime. It may take decades until carbon-neutral vessels can be deployed at scale

which means that the global fleet will continue to exhibit large levels of heterogeneity for

many years to come. The cost incentives of shippers described in this paper will therefore

continue to play an important role. Similarly, overcapacity will continue to diminish the

operational efficiency of the fleet and raise global transport emissions, unless transport

providers come up with new solutions to maintain high load factors, especially in the

presence of negative demand shocks. As current order books forecast an unparalleled

period of capacity expansion, issues of overcapacity could plague the profitability and

environmental progress of the industry for many years to come.

At the same time, insights developed in this paper point to other potential avenues of

sectoral decarbonization. First, unilateral carbon taxes in the shipping sector are more

effective when imposed by countries with high emission intensity in production to max-

imize environmental spillovers. Second, directly incorporating environmental consider-

ations into the design of shipping routes could limit demand dispersion and increase

operational efficiency of the global fleet. Finally, policymakers could consider ’cash for

clunkers’ policies which subsidize the scrapping of inefficient vessels to lower overcapacity

while raising average fleet efficiency. These approaches could deliver substantial emission

savings while limiting the negative impacts of policy interventions and therefore represent

promising avenues of future research.

46



References
Aichele, R. and G. Felbermayr (2015). Kyoto and Carbon Leakage: An Empirical Anal-

ysis of the Carbon Content of Bilateral Trade. The Review of Economics and Statis-

tics 97 (1), 104–115.

Allen, T. and C. Arkolakis (2022). The Welfare Effects of Transportation Infrastructure

Improvements. The Review of Economic Studies 89 (6), 2911–2957.

Alvarez, F. and R. E. Lucas (2007). General equilibrium analysis of the eaton–kortum

model of international trade. Journal of Monetary Economics 54 (6), 1726–1768.

Antweiler, W., B. R. Copeland, and M. S. Taylor (2001). Is free trade good for the

environment? American Economic Review 91 (4), 877–908.

Asturias, J. (2020). Endogenous transportation costs. European Economic Review 123,

103366.

Bombardini, M. and B. Li (2020, July). Trade, pollution and mortality in China. Journal

of International Economics 125, 103321.

Brancaccio, G., M. Kalouptsidi, and T. Papageorgiou (2020). Geography, Transportation,

and Endogenous Trade Costs. Econometrica 88 (2), 657–691.

Caliendo, L. and F. Parro (2015). Estimates of the Trade and Welfare Effects of NAFTA.

The Review of Economic Studies 82 (1), 1–44.

Cattaneo, M. D., R. K. Crump, M. H. Farrell, and Y. Feng (2023). Binscatter Regressions.

The Stata Journal , 1–51.

Cherniwchan, J. (2017). Trade liberalization and the environment: Evidence from NAFTA

and U.S. manufacturing. Journal of International Economics 105, 130–149.

Chung, S. (2014). Environmental regulation and foreign direct investment: Evidence from

South Korea. Journal of Development Economics 108, 222–236.

47



Copeland, B. R., J. S. Shapiro, and M. Scott Taylor (2022). Chapter 2 - globalization

and the environment. In G. Gopinath, E. Helpman, and K. Rogoff (Eds.), Handbook of

International Economics: International Trade, Volume 5, pp. 61–146.

Copeland, B. R. and M. S. Taylor (1994). North-South Trade and the Environment. The

Quarterly Journal of Economics 109 (3), 755–787.

Coşar, A. K. and B. Demir (2018). Shipping inside the box: Containerization and trade.

Journal of International Economics 114, 331–345.

Cristea, A., D. Hummels, L. Puzzello, and M. Avetisyan (2013). Trade and the greenhouse

gas emissions from international freight transport. Journal of Environmental Economics

and Management 65 (1), 153–173.

Ducruet, C., R. Juhász, D. K. Nagy, and C. Steinwender (2024). All aboard: The effects

of port development. Journal of International Economics 151, 103963.

Eaton, J. and S. Kortum (2002). Technology, Geography, and Trade. Econometrica 70 (5),

1741–1779.

EPA (2023). EPA Report on the Social Cost of Greenhouse Gases: Estimates Incor-

porating Recent Scientific Advances. Technical Report EPA-HQ-OAR-2021-0317, US

EPA.

Fajgelbaum, P. D. and E. Schaal (2020). Optimal Transport Networks in Spatial Equi-

librium. Econometrica 88 (4), 1411–1452.

Farrokhi, F. and A. Lashkaripour (2023). Can Trade Policy Mitigate Climate Change?

mimeo.

Fowlie, M. and M. Reguant (2018). Challenges in the measurement of leakage risk. AEA

Papers and Proceedings 108, 124–29.

Fuchs, S. and W. F. Wong (2022). Multimodal Transport Networks. Federal Reserve

Bank of Atlanta, Working Papers 2022 (13).

48



Ganapati, S., W. F. Wong, and O. Ziv (2024). Entrepôt: Hubs, scale, and trade costs.

American Economic Journal: Macroeconomics 16 (4), 239–78.

Gaulier, G. and S. Zignago (2010). Baci: International trade database at the product-level.

the 1994-2007 version. Working Papers 2010-23, CEPII.

Hanna, R. (2010). Us environmental regulation and fdi: Evidence from a panel of us-based

multinational firms. American Economic Journal: Applied Economics 2 (3), 158–89.

Hansen-Lewis, J. and M. M. Marcus (2022). Uncharted waters: Effects of maritime

emission regulation. Working Paper 30181, National Bureau of Economic Research.

Heiland, I., A. Moxnes, K. H. Ulltveit-Moe, and Y. Zi (2022). Trade From Space: Shipping

Networks and The Global Implications of Local Shocks. mimeo.

IMO (2020). Fourth IMO GHG Study 2020.

Kortum, S. and D. A. Weisbach (2022). Optimal Unilateral Carbon Policy. mimeo.

Kucheryavyy, K., G. Lyn, and A. Rodríguez-Clare (2023). Grounded by gravity: A

well-behaved trade model with industry-level economies of scale. American Economic

Journal: Macroeconomics 15 (2), 372–412.

Leibovici, F. and J. Dunn (2023). Navigating the Waves of Global Shipping: Drivers and

Aggregate Implications. Technical Report 2023-002.

Lenzen, M., K. Kanemoto, D. Moran, and A. Geschke (2012). Mapping the structure of

the world economy. Environmental Science & Technology 46 (15), 8374–8381.

Lenzen, M., D. Moran, K. Kanemoto, and A. Geschke (2013). Building eora: A global

multi-region input-output database at high country and sector resolution. Economic

Systems Research 25 (1), 20–49.

Lugovskyy, V., A. Skiba, and D. Terner (2024). Unintended Consequences of Environ-

mental Regulation of Maritime Shipping: Carbon Leakage to Air Shipping. mimeo.

49



Monios, J. (2023). When smooth space becomes turbulent: The collapse of Hanjin Ship-

ping and the immobilisation of ships, containers, goods and people. Environment and

Planning A: Economy and Space 55 (2), 320–338.

Nordhaus, W. (2015). Climate Clubs: Overcoming Free-riding in International Climate

Policy. American Economic Review 105 (4), 1339–1370.

Nordhaus, W. D. and J. Boyer (2000). Warming the World: Economic Models of Global

Warming. The MIT Press.

Notteboom, T., A. Pallis, and J.-P. Rodrigue (2022). Port Economics, Management and

Policy (1st ed.). London: Routledge.

Redding, S. J. and M. A. Turner (2015). Transportation Costs and the Spatial Organiza-

tion of Economic Activity. In Handbook of Regional and Urban Economics, Volume 5,

pp. 1339–1398. Elsevier.

Schott, P. K. (2014). The relative sophistication of Chinese exports. Economic Pol-

icy 23 (53), 6–49.

Shapiro, J. S. (2016). Trade Costs, CO 2 , and the Environment. American Economic

Journal: Economic Policy 8 (4), 220–254.

Shapiro, J. S. (2020). The Environmental Bias of Trade Policy*. The Quarterly Journal

of Economics 136 (2), 831–886.

Shapiro, J. S. and R. Walker (2018). Why Is Pollution from US Manufacturing Declining?

The Roles of Environmental Regulation, Productivity, and Trade. American Economic

Review 108 (12), 3814–3854.

Simonovska, I. and M. E. Waugh (2014). The elasticity of trade: Estimates and evidence.

Journal of International Economics 92 (1), 34–50.

UNCTAD (2022). Navigating stormy waters. Number 2022 in Review of maritime trans-

port, United Nations Conference on Trade and Development. Geneva: United Nations.

50



Wong, W. F. (2022). The Round Trip Effect: Endogenous Transport Costs and Interna-

tional Trade. American Economic Journal: Applied Economics 14 (4), 127–166.

51



A Data sources

A.1 Fuel efficiency of the global container fleet
This section describes the main datasets and construction process of ship-level measures

of fuel efficiency.

Ship movements: To start with, I use AIS port-of-call data from 2014-2018. Each time

a ship is entering or leaving a port, a satellite records the time, location and draught of

the vessel in question. I use this information to track vessel movements across ports and

thereby reconstruct the flow of traffic across the transport network. The data contains

around 470,000 port calls made by 5,100 container vessels at over 1100 ports each year.

Port-to-port distance: To compute the distance between ports, I use the recorded

latitude and longitude of AIS port call data and apply Dijkstra’s algorithm to find the

shortest path between two adjacent port calls. The recovered sea distance represents a

lower bound of the actual travel distance of the vessel which remains unobserved. Emission

estimates based this distance measure may therefore underestimate the true environmental

cost of trade.

Container traffic: The recorded draught at entry and exit of ports can be used to

infer how much cargo a vessel is carrying at any moment in time. To do so, I compare

the observed draught recorded by the satellite, HA, with the minimum and maximum

draught of the vessel, HB and HS, commonly referred to as ballast and scantling draught

in the industry. Both are reported by the vessel manufacturer in a separate dataset

which also includes the maximum carrying capacity of each vessel, known as the ship’s

deadweight tonnage (dwt). I follow Heiland et al. (2022) and assume that ballast draught

HB = 0.55HS which means that a ship is considered to travel empty if the recorded

draught is at or below 55% of its scantling draught. The cargo weight of each individual

trip can then be estimated using the following formula:

dwtcurrent = dwtmax ∗ (HA −HB)/(HS −HB).

Fuel consumption: A separate dataset provided by S&P Global reports hourly fuel

consumption estimates of container ships between 2018 and 2021. These engineering

52



estimates are based on the specific engine configuration installed on each ship and account

for the vessel’s current capacity utilization, speed and location. To capture fuel efficiency

differences between ships, I compute the annual efficiency ratio (AER) of each vessel by

dividing total fuel consumption by the ship’s total carrying capacity (dwt) and annual

travel distance recovered from port-of-call data. This efficiency ratio indicates how much

fuel a vessel consumes per ton-km of supplied service capacity in 201865.

Data used to compute efficiency ratios exclusively focuses on fuel consumption at sea and

therefore ignores any consumption created while manoeuvering or anchoring within ports.

To ensure a sufficient amount of information for each vessel, I require each ship to be active

for at least 720 hours at positive speed above ballast draught within a given year. In case

of missing data in 2018, I use efficiency ratios of the same vessel from subsequent years. If

vessel data is unavailable across years, I impute efficiency ratios by taking an average of

fuel efficiency of vessels which share the same carrying capacity, year of build and engine

power. This procedure allows me to recover the fuel efficiency of 5,333 container vessels

of which 17% are imputed.

Transport emissions: When computing transport emissions of an individual journey,

I multiply each vessel’s efficiency ratio with the observed amount of transport work. As

AERs reflect a vessel’s fuel efficiency at the average load factor in 2018, I correct for

diverging load factors on each journey using load factor elasticity β recovered in appendix

D.1.

A.2 Identifying shipping routes
Container ships typically travel along a circular route which involves a fixed sequence of

ports. This behaviour resembles buses in an urban transport network and differentiates

them from other forms of maritime transport such as bulk shipping which are more com-

parable to taxis (Brancaccio et al., 2020).

To identify circular container routes in the data, I rely on AIS port-of-call data of con-

tainer vessels between 2014 and 2018. In line with the model, I aggregate individual trips

65Note that a vessel’s carrying capacity can also be expressed as the total number of containers the
ship can carry. AERs can therefore be expressed in units of ton-km or TEU-km.
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to the country level and collapse domestic journeys to a single entry. The result is a

ship-level chain of country-to-country journeys over the entire sample period. Container

routes can thus be thought of as reoccurring sequences within the chain which share a

common start and end point.

To divide the chain into routes, I use the most frequently visited country within a given

year as a starting point and define a route as the immediate sequence of country stops

before returning to the initial country. This procedure yields around 9,000 circular routes

per year which account for 99% of global container traffic. Further details are provided

in Table 4 which lists the five most and least frequented routes in 2018.

Table 4: Shipping routes in 2018

route volume (1000 ton) rotations
top 5 routes
CHN-KOR-CHN 377960 6483
CHN-HKG-CHN 195246 3206
CHN-TWN-CHN 187134 4506
CHN-JPN-CHN 179712 7198
BRA-URY-ARG-URY-BRA 138907 985

bottom 5 routes
CHN-MAC-CHN 4 2
ROU-TUR-BGR-ROU 3 3
IRN-QAT-ARE-IRN 3 3
TUR-RUS-GRC-TUR 3 3
IRN-ARE-QAT-IRN 2 3

The table shows the five most and least frequent shipping routes in the
network based on transport volume. Routes are identified following the
procedure outlined in appendix A.2.

A.3 Additional data for counterfactual analysis
To estimate policy counterfactuals, I complement data from section 2 with two additional

data sets.

Trade data: Bilateral trade data is obtained from the BACI database, maintained by the

Centre d’etudes Prospectives et d’Informations Internationales (CEPII). It contains data

on bilateral trade flows of 227 countries in 2018. To aggrgate BACI data to containerized

and non-containerized sectors, I follow the procedure described in appendix D.3.

Global input-output data: The second new dataset is the EORA Global Supply Chain

54



Database which is a multi-region input-output table and contains information on input-

output linkages, country-level production and consumption and emission intensities for

190 countries. I rely on the simplified Eora26 table which consists of 26 sectors and is

publicly available at https://www.worldmrio.com/eora26/.

Table 5 describes how to map the 26 sectors of the original data into the three sectors of

the model. To compute Cobb-Douglas expenditure shares φ and value added shares γ for

each sector, I follow the procedure explained in Caliendo and Parro (2015).

Production emission intensity: EORA also reports total CO2 emissions created by

each sector from the production of intermediary and final goods. I use this information to

compute emission intensities by dividing total emissions by total output in each country-

sector. Emission intensity is then measured in units of ton of CO2 per USD of output.

Table 5: Mapping EORA sectors to the model

Model sector EORA sector

containerized trade Fishing, Food and Beverages, Textiles and Wearing Apparel,
Wood and Paper, Metal Products, Electrical and Machinery,
Transport Equipment, Other Manufacturing, Recycling,
Reexport and Reimport, Others

non-containerized trade Agriculture, Mining and Quarrying, Petroleum Chemical and Non-Metallic,
Electricity Gas and Water, Financial Intermediation and Business Activities

non-tradable Construction, Maintenance and Repair, Wholesale Trade, Retail Trade,
Hotels and Restraurants, Transport, Post and Telecommunications,
Public Administration, Education Health and Other Services,
Private Households
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B Additional graphs

B.1 Change in emission determinants over time

Figure 11: Global transport emissions of container ships (2016-2018)

Note: Figure 11 displays the changes in fuel efficiency, transport demand and CO2 emission relative to
the first quarter of 2016.

B.2 Load factors and network traffic

Figure 12: Load factors and segment traffic by ship size

Note: This Figure plots the relationship between average load factors and segment traffic for different
vessel size bins. It is otherwise identical to Figure 2 in the main text.
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B.3 Fleet characteristics

Figure 13: Supply of transport capacity

(a) delivery times of container ships

(b) global fleet in use

Note: The Figure grants insights into the supply of containerized transport capacity. Panel a) shows
average delivery times (in months) of new container ships between 1990 and 2020. Panel b) displays the
daily share of global transport capacity in use in 2018. For this graph, a ship is considered ’idle’ if it has
travelled for less than 10km per day for at least 7 consecutive days.
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C Additional derivations

C.1 Sourcing probability

To derive the sourcing probability in equation 4, I closely follow Eaton and Kortum

(2002). Using the stochastic transport cost from equation 3, the price of a good produced

in country i which is shipped along route r before being sold in country j is

pijnr =
cinκijnτ̃ijr

ϵijnr

where ϵijnr is an ideosyncratic route shock drawn from a Fréchet distribution. Random

variation in route costs renders the choice of optimal supplier-route combinations non-

deterministic. The probability that price pijnr represents the lowest price for consumers

in country j can be written as

πijnr(ω) ≡ Pr
{
pijnr ≤ min

i′∈I\i,r′∈Rij\r
pi′jnr′

}
=

∫ ∏
i′,r′

(1−Gi′jnr′)dGijnrdp (20)

where

Gijnr = Pr {pijnr < p}∏
i′,r′

(1−Gi′jnr′) =
∏
i′,r′

Pr {pi′jnr′ ≤ p} .

Using the cumulative distribution function of route shocks ϵijnr specified in equation 2,

we get

Gijnr = 1− exp
[
−pθ(cinκijnτ̃ijr)

−θ
]

dGijnr = −exp
[
−pθ(cinκijnτ̃ijr)

−θ
]
θpθ−1(cinκijnτ̃ijr)

−θ

∏
i′,r′

(1−Gi′jnr′) = exp

[
−pθ

∑
i′

(
(ci′nκi′jn)

−θ ·
∑
r′

τ̃i′jr′)
−θ

)]
.

Plugging these three expressions into equation 20 and integrating over all values of p, we

get the sourcing probability shown in equation 4 the main text:

πijnr =
[cinκijnτ̃ijr]

−θ∑
i′∈I

[
(ci′nκi′jn)−θ ·

∑
r′∈Ri′j

τ̃−θ
i′jr′

]
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C.2 Optimal allocation of surplus capacity

In this section, I derive the optimal allocation of surplus capacity in a setting where clean

ships have been allocated according to equation 12 and dirty capacity, after idling as many

vessels as possible, (1− η)Bd exceeds the remaining transport demand B′
d.

In the absence of surplus capacity, each route receives the minimum amount of capacity

required to serve transport demand. As explained in the main text, the route-segment

with the highest demand determines the number of route rotations ΞL,max

Ns
resulting in a

minimum route capacity of ΞL,max

Ns
Ns

∑
h dL,h = ΞL,max

∑
h dL,h. In presence of surplus

capacity, vessels no longer operate at full capacity on route-segment (L,max). Assuming

demand is equally shared among all vessels operating on the same route, this increases

the number of route rotations to ΞL,max

µL,maxNs
where µL,max < 1 represents the load factor on

the top segment. For a given level of µL,max, total capacity supplied to route L in presence

of surplus capacity is thus

total capacity with surplus =
ΞL,max

µL,max

∑
h

dL,h. (21)

To facilitate the discussion, I assume a common maximum load factor µL,max across all

routes that receive surplus capacity. Parameter µL,max governs the amount of surplus

capacity each route can accommodate. A common maximum load factor means that routes

differ in the level of surplus capacity they receive but all share the same relative capacity

increase compared to minimum capacity ΞL,max

∑
h dL,h. This keeps the allocation of

surplus capacity tractable and can be rationalized by a common minimum fuel efficiency

threshold for continued route operation that is shared by all shippers.

Surplus capacity increases the number of full and empty trips on a route-segment to
ΞL,h

µL,maxNs
and ΞL,max−ΞL,h

µL,maxNs
respectively, leading to a fuel expenditure on route-segments of

FL,h =

(
δ̂
µ=µL,max

L,s · ΞL,h

µL,maxNs

+ δ̂µ=0
L,s · ΞL,max − ΞL,h

µL,maxNs

)
· dL,h

and total route cost to

FL =
1

µL,max

(
δ
µ=µL,max

L,s ·
∑
h

ΞL,hdL,h + δµ=0
L,s ·

∑
h

(ΞL,max − ΞL,h)dL,h

)
. (22)
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To compare the impact of surplus capacity across routes I derive two objects. First,

the increase in route cost from a marginal decrease in load factor µL,max. Second, the

increase in surplus capacity on route L associated with the same decrease in load factor.

Both objects are required because a marginal decrease in µL,max causes different levels of

surplus capacity across routes. Dividing the former by the latter therefore harmonizes the

cost increase and allows me to compare the detrimental impact of surplus capacity across

routes.

Surplus capacity on route L is equal to the difference between total capacity inclusive of

surplus and the minimum capacity required to serve transport demand:

Bsurplus,L =
1− µL,max

µL,max

·
∑
h

ΞL,maxdL,h.

Decreasing load factor µL,max results in an increase in surplus equal to

−dBsurplus,L

dµL,max

=
1

(µL,max)2
·
∑
h

ΞL,maxdL,h. (23)

The corresponding marginal change in route cost FL in equation 22 is

− dFL

dµL,max

=
1

(µL,max)2
· FL −

dδµ=µL,max

L,s

dµL,max

· 1

µL,max

·
∑
h

ΞL,hdL,h. (24)

Plugging equation 22 into equation 24 and dividing equation 24 by equation 23, we get

CL = − dFL

dµL,max

· − dµL,max

dBsurplus,L

= − dFL

dµL,max

· (µL,max)
2∑

h ΞL,maxdL,h

=

(
δ
µ=µL,max

L,d −
dδµ=µL,max

L,s

dµL,max

µL,max

)
· µ̄L + δµ=0

L,d · (1− µ̄L)

which is identical to equation 14 in the main text.
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C.3 Solving the general equilibrium model

To close the model in section 4, I adopt the general equilibrium framework of Caliendo

and Parro (2015). The framework features two types of goods. Intermediate goods ωn

from industry n are used as inputs in the production of composite goods min in country i.

Composite goods in turn either serve as final goods for consumers or become inputs in the

production of intermediate goods. Intermediate and composite goods therefore create a

system of roundabout production. While both serve as inputs for each other, intermediate

goods are only produced from domestic composite goods while composite goods source

intermediate inputs globally from the lowest cost suppliers as long as intermediates ωn

are tradable.

I aggregate industries into three sectors (N = 3): two tradable sectors (ct = containerized

and nct = non-containerized) and a non-tradable sector nt such that n ∈ [ct, nct, nt].

Composite goods therefore have to source inputs ωnt domestically but can source ωct and

ωnct globally. While all three sectors transport goods through a sector-specific cost matrix

An, I only consider cost changes in containerized sector ct.

Consumption: Consumers in each country i choose from a variety of composite goods

min to maximize Cobb-Douglas utility

Ui =
N∏
n

mφn

in where
∑

φn = 1

where φn represents the Cobb-Douglas industry shares.

Intermediate goods production: Firms in country i produce a continuum of inter-

mediate goods in each sector n using labour lin and composite goods min as inputs.

Countries differ in their efficiency of production which is represented by Ricardian tech-

nology parameter zin. The sector-specific production function for intermediate good ω is

thus

qin(ω) = zin[lin]
γin

N∏
n′

[
mn′

in

]γn′
in
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where γin = 1 −
∑N

n′ γn′
in captures the share of value added of industry n in country i.

Under perfect competition, the marginal cost of producers then becomes

cin ≡ Υinwγin
i

∏N
n′ P

γn′
in

in′

zin

where wi represents the wage in country i, Pin′ is the price of composite good min′ from

sector n′ and Υin =
∏N

n′

(
γn′
in

)γn′
in (γin)

γin is a constant.

Composite goods production: Composite goods are produced as a CES aggregate of

intermediate goods which are indexed in each sector by ωn ∈ Ωn. In non-tradable indus-

tries nt, intermediate inputs are sourced domestically at marginal cost cin. In tradable

sectors ct and nct, intermediate goods are sourced internationally from the lowest-cost

supplier after taking into account trade costs κijn such as tariffs and transport costs τijn

which are determined by the optimal allocation of ships as shown in section 4.2. The

expected price of composite good mjn in sector n of country j is then

Pjn = An

[
I∑

i=1

c−θn
i κ−θn

ijn τ−θn
ijn

]

where An is a sector-specific constant.

Equilibrium in changes: In that follows, the hat-notation symbolizes the change in

underlying variable v̂ = v′

v
where v′ represents counterfactual values of v. An exogenous

shock to transport costs on network segment (k, l), tk,l, leads to a change in the marginal

cost of production of intermediate goods in country i according to

ĉin = ŵγin
i

N∏
k=1

P γink

ik . (25)

This cost increase changes prices of composite goods in i to

P̂in =

[
J∑

i=1

πijn[τ̂ijnĉin]
−θn

]−1/θn

. (26)

Bilateral trade shares between countries i and j respond to changes in production cost

ĉin, transport cost τ̂ijn and price of the composite good P̂in according to

π̂ijn =

[
ĉinτ̂ijn

P̂in

]−θn

. (27)
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Total exports of country i adjust accordingly to

X
′

in =
N∑
k=1

γink

I∑
j=1

π
′
ijn

1 + κijn

X
′

jk + αinI
′

i (28)

where I ′
i = ŵiwiLi+

∑N
n=1

∑I
i=1 τ

′
ijn

π
′
ijn

1+κijn
X

′
in+Di. To balance trade in the counterfactual

(up to deficit shifter Di), it must hold that

N∑
n=1

I∑
i=1

π
′
ijn

1 + κijn

Xin −Di =
N∑

n=1

I∑
i=1

π
′
jin

1 + κjin

Xjn. (29)

To solve this system of equations, I follow the solution algorithm of Caliendo and Parro

(2015) which iteratively determines the change nominal wage vector w for which trade in

equation 29 is balanced.
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D Estimation details

D.1 Within-ship load factor elasticity

This section explains how to estimate within-ship load factor elasticity β using fuel con-

sumption data explained in detail section A. The load factor elasticity captures the per-

centage change in fuel consumption per container-slot within vessels when increasing the

vessel’s load by one percentage point. Higher loads are generally associated with lower

unit fuel consumption because the fixed cost of operating the vessel can be spread over a

larger number of containers.

To estimate the load factor elasticity, I rely on hourly fuel consumption data of container

vessels in 2018. To rule out inconsistencies in vessel operation, I focus on fuel consump-

tion recorded at days with 24 hours of sail activity. The dependent variable is hourly unit

fuel consumption per transport volume (measured in TEU) or per transport work (mea-

sured in TEU-km). The main variable of interest, load factors, are based on the average

capacity utilization of the vessel on each day which directly observed by the satellite. In

line the literature66, I assume that 45% of total vessel capacity is available for cargo and

compute load factors by rescaling the capacity utilization levels between 55% and 100%

to the unit interval.

To control for unobserved vessel-specific characteristics which might affect the ship’s unit

fuel consumption such as different levels of maintenance or repair, I include ship-level

fixed effects. Speed limits or other region-specific unobservables are controlled for via

another set of sailing region fixed effects. The baseline estimation equation is thus

log(F̄s,r,t) = β · µs,t + FEs + FEr + εs,r,t (30)

where indices (s, r, t) refer to observations at the ship-region-day level. The main coeffi-

cient of interest is load factor elasticity β which captures the percentage change in unit

fuel consumption from a one percentage point (pp) increase in load factor µ.

66Heiland et al. (2022) for example assume that a ship is sailing in ballast, meaning it does not carry
any containers, until the observed draught exceeds 55% of the vessel’s maximum (= scantling) draught.
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Benchmark results shown in Table 6 indicate that the unit fuel consumption falls between

51% to 71% when raising load factors from 0% to 100%. Robustness checks presented in

Table 7 confirm these estimates.

Table 6: Load factor elasticity within ships

Dependent var: fuel per TEU fuel per TEU-km fuel per TEU-km fuel per TEU-km
Model: all all small ships big ships

Variables
load factor (pp) -0.0057∗∗∗ -0.0068∗∗∗ -0.0071∗∗∗ -0.0051∗∗∗

(0.0003) (0.0002) (0.0002) (0.0003)

ship FE yes yes yes yes
sailing region FE yes yes yes yes

R2 0.530 0.757 0.739 0.603
Observations 195,902 195,902 165,607 30,295

The table shows estimates of within-ship load factor semi-elasticity obtained from estimating equation 30
in appendix D.1 via OLS. Fuel efficiency is measured in units of transport volume in column 1 and trans-
port work otherwise. Load factors are measured in percentage points (pp). Standard errors in parenthe-
ses are clustered at the sailing region level. Significance codes: ***: 0.01, **: 0.05, *: 0.1.

Table 7: Robustness: Load factor elasticity within ships

Model: benchmark load factor 50+ ECA TEU>2500 seasonality

Variables
load factor (pp) -0.0068∗∗∗ -0.0051∗∗∗ -0.0070∗∗∗ -0.0068∗∗∗ -0.0069∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

ship FE yes yes yes yes yes
sailing region FE yes yes yes yes yes
ECA FE yes
region-day FE yes

R2 0.757 0.743 0.758 0.676 0.804
Observations 195,902 152,136 196,761 162,598 196,761

The table shows estimates of within-ship load factor semi-elasticity obtained from estimating equation
30 in appendix D.1 via OLS. Fuel efficiency is measured in units of transport work. Load factors are
measured in percentage points (pp). Column 1 is identical to benchmark estimates presented in Table 6.
Column 2 and 4 restrict the sample to ships travelling at a minimum load factor of 50% and ships with
a minimum capacity of 2,500 TEU respectively. Columns 3 and 5 add emission control area (ECA) and
daily weather changes via region-day fixed effects. Standard errors in parentheses are clustered at the
sailing region level. Significance codes: ***: 0.01, **: 0.05, *: 0.1.
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D.2 Between-ship fuel efficiency

Figure 14: Estimation of between-ship parameters δc and δd

(a) lnF data and lnFmodel

Coefficient Estimate

δµ=0
c 0.932
δµ=0
d 1.864

corr(lnF data, lnFmodel) 0.946

(b) Fuel per TEU-km

This Figure presents GMM estimates of equation 18 presented in section 5.1. Figure 14a illustrates
the correlation (in logs) between observed and model-predicted fuel expenditure using optimal fuel
efficiency parameters δc and δd which are listed in Figure 14b. To ensure no overlap in efficiency range
of clean and dirty vessels, I impose δµ=1

d ≥ δµ=0
c when estimating parameters δ. GMM estimates

assume a clean ship size Nc = 10, 000 TEU, a dirty ship size Nd = 1, 000 TEU and exogenous surplus
parameter µmax = 0.75.

66



D.3 How to recover global transport cost
This section provides further details about how to recover transport cost matrix A fol-

lowing the procedure developed by Ganapati et al. (2024) (GWZ) and summarized in the

main text.

To start with, I create a mapping between HS4 products and their dominant mode of

transport. To do so, I use US customs data from 2018 maintained by Schott (2014)

and available at https://sompks4.github.io/sub_data.html which breaks down im-

port volumes by mode of transport. I label all HS codes as containerized if at least 80% of

total import volume is transported onboard of container ships. I then apply the mapping

to the publicly available BACI database (Gaulier and Zignago, 2010) which is maintained

by Centre d’etudes Prospectives et d’Informations Internationales (CEPII) and contains

data on bilateral trade flows of 227 countries in 2018. Aggregating trade according to the

mapping then provides me with containerized trade flows at the origin-destination (i, j)

level in 2018.

To recover transport cost of containerized trade, I assume that leg-level transport cost is

identical within set of industries n ∈ N̄ where N̄ = {containerized, non-containerized}.

This changes equation 6 to

ΞklN̄ =
∑
i

∑
j

XijN̄

(
τijN̄

τikN̄ tklN̄τljN̄

)θ

(31)

where elements
(

τijN̄
τikN̄ tklN̄ τljN̄

)
are all based on cost matrix AN̄ .

As leg-level container traffic ΞklN̄ and origin-destination level trade flows XijN̄ are directly

observed by AIS satellite data and aggregated BACI data described above, we can invert

this system to recover cost matrix AN̄ . The remaining challenge in doing so is that

observed AIS traffic data only captures maritime traffic. It therefore may underestimate

total containerized traffic on network legs (k, l) which are directly or indirectly connected

via land borders.

To overcome this challenge, GWZ suggest a prediction method that does not require

knowledge of the entire matrix of traffic flows. Instead of recovering transport cost from

the full system of equations which requires information on ΞklN̄ for every segment, cost
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elements of transport matrix AN̄ are predicted via the mapping

t̂−θ
klN̄

=
1

1 + exp(Yρ)
∈ [0, 1] (32)

where matrix elements Yρ are fitted values from an auxiliary regression that resembles a

gravity equation

Yρ = ρ0 + ρ1 · ln dkl + ρ2 · ln Ξkl + ρ3 · ln Ξk + ρ4 · ln Ξl (33)

+ ρ5 · 1backhaul + ρ6 · 1{k, l ∈ land border}+ ρ7 · 1{k, l ∈ landlocked}

where ρ0 is an intercept, ρ1 captures the average sea distance between ports in countries

k and l, ρ2, ρ3 and ρ4 refer to total, incoming and outgoing traffic, ρ5 indicates whether

traffic in direction (k, l) is subject to backhaul problems due to higher demand in the

mirror leg (l, k) (Wong, 2022), and ρ6 and ρ7 are dummy variables indicating whether

countries share a land border or are landlocked.

Auxiliary equation 33 allows us to predict transport costs for any segment in the network

for which independent variables captured by matrix Y are available. Feeding the fitted

values of the auxiliary equation into mapping 32 ensures that all cost elements remain

within the unit interval as required by the theoretical framework in section 4. While this

procedure can be used to recover the entire cost matrix A, coefficients ρ remain unbiased

when estimating them from a subset of legs (k, l) on which all traffic is maritime. This

allows me to recover a transport cost matrix that rationalizes traffic on all legs, even

though only a subset of them is used in the estimation.

To find cost elements t̂−θ
klN̄

that can rationalize observed traffic and trade, coefficients ρ

are estimated by minimizing equation 19 in the main text. GMM results are presented

in Table 8. It should be noted that the sole purpose of coefficients ρ is to predict cost

matrix A. They should not be interpreted by themselves and do not represent any causal

relationship between independent variables and fitted values.
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Table 8: prediction inputs for transport cost matrix

Coefficient Estimate

ρ0 (intercept) 10.64
ρ1 (log distance) -0.26
ρ2 (log route traffic) -1.38
ρ3 (log outgoing traffic) 0.81
ρ4 (log incoming traffic) 0.46
ρ5 (back-haul) -0.16
ρ6 (land borders) -1.84
ρ7 (landlocked) -6.40

The table shows GMM estimates of auxiliary regression 33 in ap-
pendix D.3. Estimated coefficients are not causal and only used
to find transport cost matrix A that can rationalize observed leg-
level traffic Ξkl and origin-destination trade flows Xij in equation
6.

D.4 Decomposition of scale effects

This section illustrates how the theoretical framework can be used to obtain theory-

consistent scale effect estimates that can be directly compared to reduced-form evidence in

the literature. Prior attempts to estimate scale effects in the maritime transport network

at the leg-level do not provide a microfoundation and instead pursue an approach that is

agnostic to the underlying mechanism. Ganapati et al. (2024) (GWZ) for example specify

the following equation to estimate scale effects in the shipping industry

ln(tθh − 1) = λ0 + λ1 · ln Ξh + λ2 · ln dh + εh (34)

where λ1 can be interpreted as a leg-level scale elasticity between transport cost (tθh−1) and

volume (Ξh) after deflating estimates by trade elasticity θ. To interpret λ1 as a causal

estimate, a geography-based instrument67 is used to control for endogenous changes in

transport demand Ξh due to unobserved cost components. For a commonly used trade

elasticity of θ = 4 (Simonovska and Waugh, 2014), the authors report a leg-level elasticity

67The instrument exploits the fact that segments h which are located on the shortest path between
origin i and destination j should naturally receive higher levels of traffic. Summing across all origins and
destinations then provides an index for each segment’s natural suitability for global containerized trade.
As this index is purely based on geography, it acts as an exogenous demand shifter. For the construction
of the instrument, I refer to equation 12 of the original paper.
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of -0.06 which for an average route-length of 3 translates to an origin-destination scale

elasticity of -0.17.

Conversely, scale effects in this paper arise endogenously from the optimal allocation of

transport capacity. To compare the empirical estimates of the literature to the model-

implied scale elasticity of the theoretical framework, I proceed in three steps. In a first

step, I follow the reduced-form approach of GWZ and estimate scale effect λ1 using trans-

port cost recovered in section 5.2 and observed levels of traffic in 2018. Next, I use

the framework to derive a theory-consistent estimation equation and take it to the data.

Third, I estimate scale effects directly from the calibrated model.

Scale effects in maritime shipping generally describe a decrease in transport cost for higher

levels of traffic. While the empirical approach of GWZ assumes a direct relationship be-

tween traffic and cost (λ1), the theoretical framework instead decomposes the overall

effect into two elasticities: a fuel elasticity α1 capturing the relationship between unit fuel

consumption and traffic (= stylized fact 3), and a pass-through elasticity σ1 governing

the relationship between fuel efficiency and transport cost. The overall scale effect can

then be computed as the product of both elasticities (λ1 = α1 · σ1). To conduct a theory-

consistent estimation of scale effects, I therefore need to derive an estimation equation for

each elasticity.

Fuel and pass-through elasticities can either be estimated from external data or fully rely

on the model-generated data based on the optimal allocation of ships. Each approach will

result in a slightly different estimation equation.

When using external data, fuel elasticity α1 describes the relationship between fuel ef-

ficiency F̄h and transport volume Ξh. This allows me to use the same geography-based

instrument as GWZ to control for unobserved cost shifters that simultaneously affect

transport volume and unit fuel consumption. Elasticity α1 can then be interpreted as a

causal effect describing how fuel efficiency of vessels on segment h respond to a change

in transport volume. To derive a theory-consistent estimation equation for fuel elasticity

that allows for this instrumentation strategy, I simplify the model by assuming that a

segment h that is part of multiple routes L is always served by the same type of vessel
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(NL,h,s = Nh,s), receives a constant share of total segment volume (ΞL,h

Ξh
= w) and is not

subject to demand dispersion (ΞL,h = ΞL,max). This reduces the fuel expenditure shown

in equation 15 to

F ∗
L,h = δµ=1 · ΞL,hdL,h · n

where n =
ΞL,h

Nh,s
is the number of segment rotations on route L which is identical across

routes under the simplifying assumptions. Summing across routes L, we can express total

fuel expenditure on segment h as

F ∗
h = δµ=1 · n · dh ·

∑
L

ΞL,h

F ∗
h = δµ=1 · d travel

h · Ξh

where d travel
h represents the total distance (in km) travelled on segment h and Ξh is

the total number of containers shipped on segment h. Observed fuel efficiency F̄ data
h ,

defined as total fuel expenditure Fh divided by total transport work W data
h , can thus be

decomposed into the following estimation equation

ln F̄ data
h = α0 + α data

1 · ln Ξ data
h + α2 · ln

d travel
h

W data
h

+ υh (35)

where α data
1 captures the fuel elasticity of observed fuel efficiency F̄ data

h with respect to

observed transport volume Ξ data
h . Setting th = (F̄h)

σ1 in line with equation 7 and using

fitted values of fuel efficiency ˆ̄F data
h in equation 35, we get the following pass-through

equation

ln th = σ0 + σ data
1 · ln ˆ̄F data

h + ζh (36)

where σ data
1 captures the pass-through elasticity between unit fuel consumption and trans-

port cost.

When using model-generated fuel efficiency to estimate scale effects, α1 describes the

relationship between fuel efficiency F̄h and transport work
∑

L(ΞL,hdL,h). This change

is made to provide a direct correspondence between fuel elasticity and the slope of the

fuel efficiency curve shown in Figure 6a. Fuel elasticity can simply be estimated via the
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following reduced form equation

ln F̄ model
h = α0 + α model

1 · ln
∑
L

(ΞL,hdL,h) + υh. (37)

while pass-through estimates are obtained from

ln th = σ0 + σ model
1 · ln ˆ̄F model

h + ζh (38)

parameter σ model
1 in equation 38. Detailed results of direct and decomposed scale effect

estimates are presented in Table 9 and summarized in Table 1. Despite the difference

across all three approaches, scale effect estimates are remarkably similar. While larger

than estimates reported in GWZ, this appears more related to the underlying data than

a difference in methodology as seen when comparing columns 1 and 2 of Table 1. The

model-based scale effects are therefore in line with the existing estimates in the literature

and can be decomposed into a negative fuel elasticity and a positive pass-through elasticity

as assumed by the model.

When conducting policy counterfactuals, I compute endogenous scale effects λ model
1 using

equations 37 and 38. Whenever there is a change in cost fundamentals τ̂ , shippers respond

by reallocating their vessels according to equations 12 and 14, resulting in an updated unit

fuel consumption F̄ model, new
h . Scale effects therefore need to be re-estimated to capture

the changed policy environment. Plugging F̄ model, new
h into equations 37 and 38, I get an

updated scale effect λ model, new
1 = α model, new

1 · σ model, new
1 .

Note that these elasticities can also be used to update transport cost matrix A in case of

a change in cost fundamentals τ̂ . A carbon tax that raises unit fuel consumption on EU

legs by 10% would for example be expected to raise transport cost by 10 · σ model
1 percent.
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Table 9: Scale effects in the maritime shipping - detailed

Approach 1: Replicate Ganapati et al. (2024)

Dependent variable: transport volume transport cost
Stage: IV Scale elasticity

Constant 5.819∗∗∗ 3.362
(2.190) (3.059)

IV 0.4229∗∗∗
(0.1512)

log dist -0.1654∗∗∗ 0.8576∗∗∗
(0.0588) (0.0521)

log transport volume (λ1) -0.4328∗
(0.2577)

R2 0.007 0.595
Observations 1,764 1,764

Approach 2: Decomposition of scale effects

observed fuel efficiency model-implied fuel efficiency

Dependent variable: fuel efficiency transport cost fuel efficiency transport cost
Stage: Fuel elasticity Pass-through Fuel elasticity Pass-through

Constant 4.456∗∗∗ 4.139∗∗∗ 6.892∗∗∗ 2.090∗∗∗
(0.1522) (0.1686) (0.2161) (0.2029)

log transport volume (α data
1 ) -0.3223∗∗∗

(0.0141)
log fuel efficiency (σ1) 1.728∗∗∗ 1.782∗∗∗

(0.1607) (0.0929)
log transport work (α model

1 ) -0.2396∗∗∗
(0.0107)

R2 -1.366 0.062 0.220 0.173
Observations 1,764 1,764 1,764 1,764

The table shows scale effect estimates across different approaches. Direct estimates in approach 1 fol-
low Ganapati et al. (2024) and rely on equations 34. Fuel elasticity estimates are based on equations 35
and 37, while pass-through elasticity uses equations 36 (column 2) and 38 (column 4). Scale elasticity of
approach 1 is equal to coefficient λ1. Scale effects from a decomposition into fuel and pass-through elas-
ticities can be obtained as λ data

1 = α data
1 ·σ1 and λ model

1 = α model
1 ·σ1 for observed and model-generated

fuel efficiency respectively. Note that column 1 in approach 2 reports the second-stage estimates of a
2SLS regression in which transport volume is instrumented by the same geography-based IV as used in
approach 1. Further details are available in appendix D.4. Significance codes: ***: 0.01, **: 0.05, *: 0.1.
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D.5 Pass-through estimation using external data

This section presents pass-through estimates using external data. Bunker fuel prices

are obtained from S&P Global Commodity Insights and cover quarterly prices of 18

bunker types listed on different exchanges around the globe. Quarterly crude oil prices

are obtained from the FED St Louis online repository (available at: https://fred.

stlouisfed.org/series/POILBREUSDM#0). Weekly container freight rates for a select

number of shipping routes are collected from Drewry and aggregated to the quarter level.

Combining the data creates a panel of freight rates and fuel cost at the route-quarter-

bunker (r, t, p) type level.

To estimate pass-through elasticities, I run the following simple regression

ln(freight rate)r,t = σ ext
1 · ln(price bunker)p,t + FEp + εr,t,p

where σ ext
1 captures the pass-through elasticity between bunker fuel and freight rates.

Bunker type fixed effects FEp control for unobserved differences across bunker exchanges

and bunker types, such that σ ext
1 is only identified from variation within bunker types over

time. To mitigate endogeneity concerns related to unobserved cost shifters which both

affect freight rates and bunker prices, I use the global crude oil price as an instrument for

bunker prices and estimate pass-through elasticities using 2SLS. Bunker fuel is a direct

derivative of crude oil. Bunker prices therefore strongly respond to price changes in crude

oil. As ships cannot directly use crude oil to run their engines, it can only affect freight

rates via bunker prices, making it a suitable instrument.

Regression results for the World Container Index and routes between Shanghai-LA, LA-

Shanghai and Shanghai-Rotterdam are reported in Table 10. Estimated pass-through

elasticities range from 0.78 to 1.37 which is slightly below but still within range of the

model-implied pass-through rates reported in Table 9.
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Table 10: Pass-through estimates using external data

Dependent Variable: log freight rate
Route: WCI SH to LA LA to SH SH to RT

Variables
log bunker price 1.115∗∗∗ 0.9805∗∗∗ 0.7823∗∗∗ 1.371∗∗∗

(0.2955) (0.3388) (0.1401) (0.3298)

Instrument
log crude price yes yes yes yes

Fixed-effects
bunker type Yes Yes Yes Yes

Fit statistics
Observations 607 607 607 607
R2 0.28965 0.22464 0.44535 0.29806
Within R2 0.27565 0.20913 0.4425 0.28422

The table presents second-stage estimates of pass-through rates obtained estimated via 2SLS.
In all regressions, crude oil prices serve as instruments for bunker prices. WCI refers to Drewry
World Container Index. SH, LA and RT stand for Shanghai, Los Angeles and Rotterdam re-
spectively. Standard errors are clustered at the year-quarter level. Significance codes: ***: 0.01,
**: 0.05, *: 0.1.
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E Additional results

E.1 Counterfactual procedure

The algorithm presented below describes the iterative procedure that is used to find a

new equilibrium after a policy-induced change in transport cost t̂kl in the network.

Table 11: Algorithm for policy counterfactuals

Steps: Model equation

1: function POLICY COUNTERFACTUAL (X0,Ξ0, t̂) → Find new equilibrium
2: Initialize baseline trade X0, traffic Ξ0 and transport cost A0

3: Compute baseline allocation of vessels F̄0 = F̄ (Ξ0) → Equations 12 and 14
4: Compute baseline scale elasticity λ0 = λ(F̄0) → Equations 37 and 38
5: Initialize change in fundamentals τ̂ → Example: EU carbon tax
6: Update cost matrix A1 = A(Ξ0;λ0; τ̂) → See appendix D.4
7: Compute B1 = (I −A1)

−1

8: Initialize loop: diff = inf, tol = ϵ
9: while diff < tol do
10: Update trade flows X1 = X(B1) → Solve equations 25 to 29
11: Update traffic Ξ1 = Ξ(X1, A1, B1) → Equation 6
12: Update allocation F̄1 = F̄ (Ξ1) → Equations 12 and 14
13: Update scale elasticity λ1 = λ(F̄1) → Equations 37 and 38
14: Update cost matrix A2 = A(Ξ1;λ1) → See appendix D.4
15: Compute B2 = (I −A2)

−1

16: Compute diff =
∑

ij(B2 −B1)
2

17: Update A1 = A2 and B1 = B2

18: Return final X1, Ξ1, F̄1

19: Compute change in real wages ŵi/P̂i → See appendix E.1
20: Compute change in transport emissions → Follow equation 17
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E.2 Benchmark estimates - heterogeneity across countries

Figure 15: Impact of 10% EU carbon tax across countries

(a) Containerized trade (change in pp)

(b) Containerized traffic (change in pp)

(c) Transport emissions (change in pp)
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E.3 Alternative fleet composition

Table 12: Impact of 10% EU carbon tax under alternative fleet compositions

35% clean fleet 45% clean fleet 100% clean fleet

idle rate η = 0 η = 0.2 η = 0 η = 0.2 η = 0 η = 0.2

change traffic (pp) -9.62 -9.48 -9.60 -9.46 -9.90 -9.99

change efficiency (pp) 17.00 4.95 17.60 4.50 17.62 15.71

change emissions (pp) 2.76 -7.82 3.22 -8.17 2.82 0.93

The table shows counterfactual estimates for a 10% EU carbon tax under alternative fleet compositions.
Columns 1 and 2 show results of the benchmark setting for a fully inelastic (η = 0) and elastic (η = 0.2)
fleet. Column pairs 3-4 repeats the analysis in a setting where the share of clean vessels within the fleet
is raised by 10pp. Column pair 5-6 shows results for a fleet that only consists of clean ships.

E.4 Allocation distortion from fuel standards
In this section, I present a counterfactual exercise which is meant to simulate EU fuel

standards without the need to observe fuel consumption data across different fuel types

in 2018. Instead of trying to capture an optimal fuel choice for each clean vessel in the

EU, I simplify the setting by assuming that every clean vessel is required to adopt a new

fuel type to meet the new standard.

The new fuel type is assumed to have a lower emission factor and a higher cost than the

current one. Adopting it therefore decreases the emission intensity which helps to comply

with EU standards but also increases the cost of clean vessels when operating on EU

segments, making it less attractive for shippers to allocate clean capacity to EU routes.

To see this, I adopt the notation of the theoretical framework. The policy intervention

can be represented by an EU-specific cost shock that raises the baseline cost parameter

of clean vessels from δc to δEU
c = δc ∗ sEU

c where sEU
c represents a fuel surcharge compared

to the baseline setting. As δEU
c > δnonEU

c , routes featuring EU segments achieve a lower

ranking in the allocation of clean capacity in equation 12 because the potential savings on

EU segments have decreased (|δEU
c −δd| < |δnonEU

c −δd|). On the margin, this incentivizes

shippers to allocate clean capacity to non-EU routes instead, especially if fuel surcharge

sEU
c becomes large.

To comply with the policy, shippers have to ensure that the fuel mix MEU defined as
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the share of total EU fuel consumption coming from clean vessels does not fall below the

baseline level MEU
0 . To do so, shippers can distort the allocation of clean capacity in

favour of EU routes by keeping the share of clean capacity identical to the baseline.

In this setting, an allocation distortion occurs whenever the EU fuel mix falls below its

baseline level. To start with, I investigate whether this is the case when combining fuel

standards with an EU carbon tax of 1%. Panel 1 of Table 13 presents fuel mix estimates

for varying levels of fuel surcharge sEU
c . Results indicate that the fuel mix generally falls

with surcharge level sEU
c but only substantially deviates from its baseline level at surcharge

rates of 50% and above. Below that, counterfactual allocations of clean capacity in the EU

are quasi-compliant with the fuel standard. The maximum distortion at a 10% surcharge

level for example amounts to merely 4% when comparing the unconstrained allocation

in panel 1 to the constrained allocation in panel 2 which is fully compliant with the fuel

standard.

As EU fuel standards in practice are not expected to raise the cost of EU vessels by

50% above their baseline level, I assume that they do not play a decisive role for the

environmental gains of carbon policy.
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Table 13: Simulated allocation distortion in the EU

fuel surcharge 0% 1% 10% 50% 95%
no allocation barrier:
fuel mix 0.17 0.17 0.17 0.15 0.04
route share 0.09 0.09 0.09 0.06 0.01

fixed EU route share:
fuel mix 0.17 0.17 0.18 0.20 0.24
route share 0.09 0.09 0.09 0.09 0.09

allocation distortion:
distortion fuel mix 1.00 1.00 1.04 1.38 6.29
distortion route share 1.00 1.01 1.04 1.37 9.26

The table compares counterfactual outcomes of a cost shock ema-
nating from a fuel surcharge on shipping routes that pass through
the EU as explained in section 6. Fuel mix and route share refer
to the share of total EU fuel consumption and total number of EU
routes that are served by clean vessels. Panel 1 shows the unre-
stricted response of shippers to the shock while panel 2 shows the
response when shippers are forced to serve EU routes with the same
share of clean vessels as in the baseline. Panel 3 compares them by
dividing restricted and unrestricted outcomes.
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E.5 Production emission - details

Figure 16: Impact of 10% EU carbon tax on production emissions

(a) production emissions of traded goods (change in pp)

(b) share of production emissions in total CO2 savings

Note: This Figure shows the change in production emissions in response to a EU carbon tax on maritime
shipping. Panel a) summarizes the percentage point change in emission levels and intensity for various
tax scenarios and regions. A 10% EU carbon tax for example reduces global emission levels by 1.4% but
raises global emission intensity (CO2 per USD) by 1.5%. Panel b) instead compares the relative share of
emission savings from production and transport emissions across countries.
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E.6 Welfare results

Figure 17: Welfare ratio across countries

Note: This Figure compares the change in environmental and non-environmental welfare components,
summarized as a ’welfare ratio’, across countries following a 10% EU carbon tax. Welfare ratios are
defined as the change in real income divided by the sum of social carbon benefits (in USD at given social
cost of carbon (SCC) and tax revenue (in EU countries).

Table 14: Welfare estimates across countries

unweighted SCC weighted SCC
country ∆ real wage ∆ CO2 ∆ welfare ratio ∆ welfare ratio

(1) (2) (3) (4) (5) (6) (7)

1 AGO -206.71 -15.34 -198.33 -24.67 -205.32 -148.33
2 ALB -107.59 -6.80 -99.21 -12.84 -107.52 -1553.78
3 ARE -3326.88 -373.65 -3318.50 -397.04 -3319.68 -462.12
4 ARG -587.34 -30.30 -578.96 -70.10 -578.18 -64.08
5 AUS -798.11 -68.15 -789.73 -95.25 -763.91 -23.34
6 AUT -2389.60 -28.85 -2381.22 -285.18 -2378.95 -224.44
7 BEL -6975.63 -694.38 -6836.18 -50.02 -6825.74 -46.54
8 BEN -34.05 -13.71 -25.68 -4.06 -33.94 -292.18
9 BGD -661.00 -42.17 -652.62 -78.89 -658.25 -241.00

10 BGR -897.80 -52.54 -888.90 -100.93 -895.51 -392.57
11 BHR -462.55 -43.02 -454.17 -55.20 -462.55 -55.20
12 BHS -58.86 -67.89 -50.48 -7.02 -58.67 -312.86
13 BLZ -5.38 -0.34 3.00 -0.64 -5.33 -107.57
14 BMU -9.92 -0.13 -1.54 -1.18 -9.82 -100.56
15 BRA -1721.66 -183.97 -1713.28 -205.47 -1689.65 -53.79
16 BRB -34.94 -2.39 -26.56 -4.17 -34.85 -376.02
17 BRN -30.94 -0.27 -22.56 -3.69 -30.52 -74.89
18 CAN -1383.25 -112.13 -1374.87 -165.08 -1344.96 -36.13
19 CHE -3111.35 -17.02 -3102.97 -371.32 -3094.69 -186.76
20 CHL -439.67 -19.50 -431.29 -52.47 -433.83 -75.21
21 CHN -23206.80 -1415.50 -23198.42 -2769.59 -23180.42 -879.77
22 CIV -257.04 -30.91 -248.66 -30.68 -256.57 -548.42
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Table 14: Welfare estimates across countries

unweighted SCC weighted SCC
country ∆ real wage ∆ CO2 ∆ welfare ratio ∆ welfare ratio

(1) (2) (3) (4) (5) (6) (7)

23 CMR -133.44 -11.54 -125.06 -15.93 -132.99 -295.13
24 COG -105.15 -10.72 -96.77 -12.55 -104.96 -548.23
25 COL -232.36 -132.06 -223.98 -27.73 -227.03 -43.62
26 CRI -106.56 -15.54 -98.18 -12.72 -105.79 -137.81
27 CUB -140.05 -16.05 -131.67 -16.71 -139.01 -134.81
28 CYM -24.79 -1.00 -16.41 -2.96 -24.64 -170.62
29 CYP -248.49 -65.61 -230.54 -13.84 -238.55 -25.01
30 CZE -1492.23 -25.08 -1483.85 -178.09 -1486.26 -249.78
31 DEU -17721.52 -1011.55 -17582.52 -127.49 -17495.16 -78.29
32 DNK -2772.20 -112.47 -2744.11 -98.69 -2743.73 -97.37
33 DOM -178.90 -94.49 -170.52 -21.35 -177.75 -154.79
34 DZA -862.34 -17.94 -853.96 -102.91 -859.69 -325.63
35 ECU -70.12 -28.95 -61.74 -8.37 -68.50 -43.34
36 EGY -633.99 -1276.27 -625.61 -75.66 -629.68 -147.19
37 ERI -8.13 -0.15 0.25 -0.97 -8.01 -67.90
38 ESP -8123.17 -1084.84 -7904.75 -37.19 -7881.99 -33.68
39 EST -644.09 -77.83 -628.11 -40.31 -635.77 -77.37
40 FIN -2268.23 -166.86 -2236.87 -72.34 -2238.87 -77.25
41 FJI -19.26 -1.57 -10.88 -2.30 -19.19 -282.96
42 FRA -11333.64 -741.99 -11187.59 -77.60 -11133.53 -56.64
43 GAB -96.65 0.13 -88.27 -11.53 -95.97 -143.96
44 GBR -15494.33 -1789.46 -15149.84 -44.98 -15094.58 -38.76
45 GEO -68.21 -5.56 -59.83 -8.14 -68.14 -1036.75
46 GHA -396.92 -21.95 -388.54 -47.37 -396.24 -585.19
47 GIN -100.95 -4.97 -92.57 -12.05 -100.85 -988.22
48 GMB -9.28 -1.95 -0.90 -1.11 -9.23 -209.90
49 GRC -1595.00 -487.14 -1497.64 -16.38 -1501.63 -17.08
50 GRL -11.25 -1.05 -2.87 -1.34 -11.19 -200.39
51 GTM -50.99 -11.62 -42.61 -6.09 -50.17 -62.42
52 HKG -6160.37 -300.33 -6152.00 -735.20 -6160.37 -735.20
53 HND -31.87 -3.82 -23.49 -3.80 -31.38 -64.36
54 HRV -909.62 -49.39 -899.21 -87.39 -906.31 -275.10
55 HTI -22.16 -2.12 -13.78 -2.64 -22.05 -195.34
56 HUN -1596.75 -26.89 -1588.37 -190.56 -1592.83 -407.42
57 IDN -993.22 -65.13 -984.84 -118.53 -974.52 -53.13
58 IND -6056.84 -514.51 -6048.46 -722.85 -5967.93 -68.12
59 IRL -5943.95 -78.92 -5923.61 -292.21 -5923.24 -287.04
60 IRN -711.88 -62.94 -703.50 -84.96 -705.55 -112.58
61 IRQ -600.23 -37.13 -591.85 -71.63 -596.12 -146.28
62 ISL -184.32 -27.33 -172.66 -15.80 -180.55 -48.85
63 ISR -1571.56 -136.82 -1563.18 -187.56 -1565.01 -240.01
64 ITA -11343.24 -672.50 -11239.29 -109.12 -11201.62 -80.09
65 JAM -58.18 -51.61 -49.80 -6.94 -57.89 -199.59
66 JOR -257.29 -10.60 -248.91 -30.71 -256.71 -445.14
67 JPN -3351.55 -226.29 -3343.17 -399.99 -3236.78 -29.20
68 KEN -92.85 -10.86 -84.47 -11.08 -92.11 -125.23
69 KHM -75.59 -2.34 -67.21 -9.02 -75.29 -249.61
70 KOR -2662.43 -384.16 -2654.05 -317.74 -2615.99 -57.33
71 KWT -913.21 -14.44 -904.83 -108.99 -911.59 -563.53
72 LBN -414.81 -152.29 -406.43 -49.50 -414.21 -690.97
73 LBY -133.54 2.17 -125.16 -15.94 -133.20 -391.07
74 LKA -290.75 -405.28 -282.37 -34.70 -289.27 -197.19
75 LTU -406.73 -64.61 -383.06 -17.18 -390.26 -24.70
76 LVA -377.88 -40.14 -362.14 -24.02 -369.79 -46.73
77 MAC -104.69 -2.02 -96.31 -12.49 -104.54 -664.31
78 MAR -1319.84 -663.52 -1311.47 -157.52 -1317.90 -677.58
79 MDG -73.24 -12.66 -64.86 -8.74 -72.87 -198.82
80 MEX -906.15 -24.62 -897.77 -108.14 -883.07 -39.26
81 MLT -1188.26 -248.16 -1126.86 -19.35 -1134.83 -22.24
82 MMR -41.20 -0.99 -32.82 -4.92 -39.47 -23.75
83 MNE -72.87 -7.67 -64.50 -8.70 -72.85 -2797.94
84 MOZ -47.89 -7.54 -39.52 -5.72 -47.51 -125.89
85 MRT -89.72 -4.06 -81.34 -10.71 -89.65 -1279.19
86 MUS -127.97 -53.99 -119.60 -15.27 -127.65 -388.65
87 MYS -1553.09 -847.57 -1544.71 -185.35 -1545.59 -206.92
88 NAM -45.73 -4.55 -37.35 -5.46 -45.35 -120.78
89 NCL -62.94 -6.18 -54.56 -7.51 -62.67 -237.54
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Table 14: Welfare estimates across countries

unweighted SCC weighted SCC
country ∆ real wage ∆ CO2 ∆ welfare ratio ∆ welfare ratio

(1) (2) (3) (4) (5) (6) (7)

90 NGA -457.50 -16.31 -449.12 -54.60 -449.76 -59.11
91 NIC -31.86 -2.06 -23.48 -3.80 -31.65 -152.37
92 NLD -11506.78 -1093.29 -11292.83 -53.78 -11277.07 -50.09
93 NOR -3302.64 -111.93 -3284.89 -186.05 -3284.75 -184.54
94 NZL -464.00 -22.38 -455.62 -55.38 -459.00 -92.84
95 OMN -248.15 -147.07 -239.77 -29.62 -247.03 -221.35
96 PAK -496.33 -104.75 -487.95 -59.23 -491.25 -97.56
97 PAN -123.00 -171.30 -114.62 -14.68 -122.02 -126.55
98 PER -298.61 -32.23 -290.23 -35.64 -295.11 -85.30
99 PHL -416.59 -19.41 -408.21 -49.72 -412.68 -106.68

100 PNG -52.00 -0.79 -43.62 -6.21 -51.65 -148.89
101 POL -2669.09 -124.83 -2633.46 -74.91 -2627.44 -64.08
102 PRT -1674.97 -262.09 -1607.31 -24.76 -1610.82 -26.11
103 PRY -40.21 -0.09 -31.83 -4.80 -39.61 -67.01
104 PYF -30.25 -2.17 -21.87 -3.61 -30.06 -157.61
105 QAT -694.69 -15.59 -686.31 -82.91 -692.67 -344.59
106 ROU -2177.25 -140.99 -2158.60 -116.75 -2162.36 -146.20
107 ROW -5766.71 -412.62 -5758.33 -688.22 -5739.74 -213.86
108 RUS -5057.75 -287.14 -5049.37 -603.61 -5057.75 -603.61
109 SAU -2541.26 -509.24 -2532.88 -303.28 -2532.19 -280.21
110 SDN -54.88 -17.22 -46.50 -6.55 -52.97 -28.76
111 SEN -150.41 -42.24 -142.04 -17.95 -150.14 -552.14
112 SGP -6523.59 -1143.89 -6515.21 -778.55 -6523.59 -778.55
113 SLE -49.14 -2.58 -40.76 -5.86 -48.97 -302.39
114 SLV -20.29 -1.12 -11.91 -2.42 -19.65 -31.80
115 SOM -0.14 -1.22 8.24 -0.02 -0.12 -8.23
116 SRB -511.38 -81.51 -503.00 -61.03 -511.15 -2197.53
117 SUR -44.91 -4.42 -36.53 -5.36 -44.80 -396.54
118 SVK -766.57 -13.21 -758.20 -91.49 -763.41 -242.04
119 SVN -579.59 -28.76 -569.36 -56.66 -576.43 -183.04
120 SWE -7903.22 -270.66 -7860.00 -182.87 -7856.98 -170.95
121 SYC -33.74 -5.07 -25.36 -4.03 -33.68 -499.31
122 SYR -157.13 -6.22 -148.75 -18.75 -156.02 -142.71
123 TGO -37.09 -30.22 -28.71 -4.43 -36.93 -238.65
124 THA -3348.66 -194.30 -3340.29 -399.64 -3336.22 -269.13
125 TTO -89.43 -3.06 -81.05 -10.67 -88.52 -97.78
126 TUN -1038.69 -71.32 -1030.31 -123.96 -1038.00 -1512.56
127 TUR -3926.36 -531.63 -3917.98 -468.59 -3912.03 -274.08
128 TWN -991.24 -299.71 -982.86 -118.30 -991.24 -118.30
129 TZA -111.41 -7.80 -103.03 -13.30 -110.77 -174.79
130 UKR -694.16 -96.11 -685.78 -82.84 -693.30 -814.46
131 URY -73.43 -2.12 -65.05 -8.76 -73.43 -8.76
132 USA -15435.45 -764.84 -15427.07 -1842.13 -15375.34 -256.81
133 VEN -218.67 -3.39 -210.29 -26.10 -212.60 -35.98
134 VNM -819.79 -223.08 -811.41 -97.84 -816.90 -283.50
135 WSM -4.92 -0.18 3.46 -0.59 -4.89 -186.32
136 YEM -40.61 0.64 -32.23 -4.85 -39.88 -56.30
137 ZAF 71.37 19.51 79.74 8.52 77.96 10.83

This table shows welfare estimates from a 10% EU carbon tax and a social cost of carbon (SCC) of 50
USD. Columns 2 shows the change in real wages in million USD while column 3 depicts the change in
carbon emissions in thousand tons of CO2. Emission savings are distributed equally across countries
in columns 4 and 5, while columns 6 and 7 weight the damage across countries following the approach
of Shapiro (2016). Welfare changes in columns 4 and 6 are measured in million USD. Welfare ratios in
columns 5 and 7 divide the changes in real wages by the gains from emission savings. Welfare changes
and ratios account for tax revenues associated with levying carbon taxes for traffic in EU waters for
respective countries. Tax revenues are hereby treated as lump-sum payments to consumers.
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